Propagation of two-particle correlations across the chaotic phase for interacting bosons
- URL: http://arxiv.org/abs/2410.10571v1
- Date: Mon, 14 Oct 2024 14:48:45 GMT
- Title: Propagation of two-particle correlations across the chaotic phase for interacting bosons
- Authors: Óscar Dueñas, David Peña, Alberto Rodríguez,
- Abstract summary: We show that many-body chaos induces an effective diffusive regime for the fully coherent correlation dynamics.
This result paves the way towards an efficient description of the dynamical behaviour of non-integrable complex many-body systems.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a detailed analysis of the propagation of experimentally relevant two-particle correlations for one-dimensional interacting bosons, and give evidence that many-body chaos induces the emergence of an effective diffusive regime for the fully coherent correlation dynamics, characterized by an interaction dependent diffusion coefficient, which we estimate. This result supports very recent experimental observations, and paves the way towards an efficient description of the dynamical behaviour of non-integrable complex many-body systems. Furthermore, we show that the dynamical features within experimentally accessible time scales of a conveniently defined two-particle correlation transport distance provide a direct and unambiguous characterization of many-body quantum chaos.
Related papers
- Influence of disordered and anisotropic interactions on relaxation dynamics and propagation of correlations in tweezer arrays of Rydberg dipoles [0.0]
We investigate the out-of-equilibrium dynamics of irregular one- and two-dimensional arrays of Rydberg dipoles featuring spatially anisotropic interactions.
We find a regime of slow relaxation characterized by a sub-ballistic propagation of correlations that remained confined to short distances even at long times.
Our findings can be relevant for a wide variety of quantum science platforms naturally featuring disordered dipolar interactions.
arXiv Detail & Related papers (2024-08-14T16:13:59Z) - Dynamics of inhomogeneous spin ensembles with all-to-all interactions:
breaking permutational invariance [49.1574468325115]
We investigate the consequences of introducing non-uniform initial conditions in the dynamics of spin ensembles characterized by all-to-all interactions.
We find that the dynamics of the spin ensemble now spans a more expansive effective Hilbert space.
arXiv Detail & Related papers (2023-09-19T16:44:14Z) - Probing dynamics of a two-dimensional dipolar spin ensemble using single
qubit sensor [62.997667081978825]
We experimentally investigate individual spin dynamics in a two-dimensional ensemble of electron spins on the surface of a diamond crystal.
We show that this anomalously slow relaxation rate is due to the presence of strong dynamical disorder.
Our work paves the way towards microscopic study and control of quantum thermalization in strongly interacting disordered spin ensembles.
arXiv Detail & Related papers (2022-07-21T18:00:17Z) - Quantum Coherent States of Interacting Bose-Fermi Mixtures in One
Dimension [68.8204255655161]
We study two-component atomic gas mixtures in one dimension involving both bosons and fermions.
We report a rich variety of coherent ground-state phases that vary with the intrinsic and relative strength of the interactions.
arXiv Detail & Related papers (2021-10-26T17:52:37Z) - Two-photon resonance fluorescence of two interacting non-identical
quantum emitters [77.34726150561087]
We study a system of two interacting, non-indentical quantum emitters driven by a coherent field.
We show that the features imprinted by the two-photon dynamics into the spectrum of resonance fluorescence are particularly sensitive to changes in the distance between emitters.
This can be exploited for applications such as superresolution imaging of point-like sources.
arXiv Detail & Related papers (2021-06-04T16:13:01Z) - Bosonic Quantum Dynamics Following Colliding Potential Wells [0.0]
We investigate the correlated non-equilibrium quantum dynamics of two bosons confined in two colliding and uniformly accelerated Gaussian wells.
Despite the comparatively weak interaction strengths employed in this work, we identify strong inter-particle correlations by analyzing the corresponding Von Neumann entropy.
arXiv Detail & Related papers (2021-02-02T14:59:08Z) - Light-matter interactions near photonic Weyl points [68.8204255655161]
Weyl photons appear when two three-dimensional photonic bands with linear dispersion are degenerated at a single momentum point, labeled as Weyl point.
We analyze the dynamics of a single quantum emitter coupled to a Weyl photonic bath as a function of its detuning with respect to the Weyl point.
arXiv Detail & Related papers (2020-12-23T18:51:13Z) - Continuous and time-discrete non-Markovian system-reservoir
interactions: Dissipative coherent quantum feedback in Liouville space [62.997667081978825]
We investigate a quantum system simultaneously exposed to two structured reservoirs.
We employ a numerically exact quasi-2D tensor network combining both diagonal and off-diagonal system-reservoir interactions with a twofold memory for continuous and discrete retardation effects.
As a possible example, we study the non-Markovian interplay between discrete photonic feedback and structured acoustic phononovian modes, resulting in emerging inter-reservoir correlations and long-living population trapping within an initially-excited two-level system.
arXiv Detail & Related papers (2020-11-10T12:38:35Z) - Soliton trains after interaction quenches in Bose mixtures [0.0]
We investigate the quench dynamics of a two-component Bose mixture and study the onset of modulational instability.
We provide an analytical estimate of the number of solitons at long times after the quench for each of the two components.
We also explain the significantly different soliton dynamics in a realistic experimental homonuclear potassium mixture.
arXiv Detail & Related papers (2020-11-05T01:59:34Z) - Interplay between coherent and dissipative dynamics of bosonic doublons
in an optical lattice [0.0]
We study how three-body losses contribute to the lattice dynamics.
We observe rapid break-up of bound pairs for weak interactions, and for stronger interactions we see doublon decay rates that are asymmetric.
arXiv Detail & Related papers (2020-05-19T21:31:59Z) - Stationary and dynamical properties of two harmonically trapped bosons
in the crossover from two dimensions to one [0.0]
We unravel the stationary properties and the interaction quench dynamics of two bosons, confined in a two-dimensional anisotropic harmonic trap.
The relation between the two and the one dimensional scattering lengths as well as the Tan contacts is established.
The interaction quench dynamics from attractive to repulsive values and vice versa is investigated for various anisotropies.
arXiv Detail & Related papers (2020-01-29T08:31:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.