Regularized Robustly Reliable Learners and Instance Targeted Attacks
- URL: http://arxiv.org/abs/2410.10572v1
- Date: Mon, 14 Oct 2024 14:49:32 GMT
- Title: Regularized Robustly Reliable Learners and Instance Targeted Attacks
- Authors: Avrim Blum, Donya Saless,
- Abstract summary: Balcan et al (2022) proposed an approach to addressing this challenge by defining a notion of robustly-reliable learners.
We show that at least in certain interesting cases we can design algorithms that can produce their outputs in time sublinear in training time.
- Score: 11.435833538081557
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Instance-targeted data poisoning attacks, where an adversary corrupts a training set to induce errors on specific test points, have raised significant concerns. Balcan et al (2022) proposed an approach to addressing this challenge by defining a notion of robustly-reliable learners that provide per-instance guarantees of correctness under well-defined assumptions, even in the presence of data poisoning attacks. They then give a generic optimal (but computationally inefficient) robustly reliable learner as well as a computationally efficient algorithm for the case of linear separators over log-concave distributions. In this work, we address two challenges left open by Balcan et al (2022). The first is that the definition of robustly-reliable learners in Balcan et al (2022) becomes vacuous for highly-flexible hypothesis classes: if there are two classifiers h_0, h_1 \in H both with zero error on the training set such that h_0(x) \neq h_1(x), then a robustly-reliable learner must abstain on x. We address this problem by defining a modified notion of regularized robustly-reliable learners that allows for nontrivial statements in this case. The second is that the generic algorithm of Balcan et al (2022) requires re-running an ERM oracle (essentially, retraining the classifier) on each test point x, which is generally impractical even if ERM can be implemented efficiently. To tackle this problem, we show that at least in certain interesting cases we can design algorithms that can produce their outputs in time sublinear in training time, by using techniques from dynamic algorithm design.
Related papers
- Probably Approximately Precision and Recall Learning [62.912015491907994]
Precision and Recall are foundational metrics in machine learning.
One-sided feedback--where only positive examples are observed during training--is inherent in many practical problems.
We introduce a PAC learning framework where each hypothesis is represented by a graph, with edges indicating positive interactions.
arXiv Detail & Related papers (2024-11-20T04:21:07Z) - A Hard-to-Beat Baseline for Training-free CLIP-based Adaptation [121.0693322732454]
Contrastive Language-Image Pretraining (CLIP) has gained popularity for its remarkable zero-shot capacity.
Recent research has focused on developing efficient fine-tuning methods to enhance CLIP's performance in downstream tasks.
We revisit a classical algorithm, Gaussian Discriminant Analysis (GDA), and apply it to the downstream classification of CLIP.
arXiv Detail & Related papers (2024-02-06T15:45:27Z) - Agnostic Multi-Robust Learning Using ERM [19.313739782029185]
A fundamental problem in robust learning is asymmetry: a learner needs to correctly classify every one of exponentially-many perturbations that an adversary might make to a test-time natural example.
In contrast, the attacker only needs to find one successful perturbation.
We introduce a novel multi-group setting and introduce a novel multi-robust learning problem.
arXiv Detail & Related papers (2023-03-15T21:30:14Z) - Toward Theoretical Guidance for Two Common Questions in Practical
Cross-Validation based Hyperparameter Selection [72.76113104079678]
We show the first theoretical treatments of two common questions in cross-validation based hyperparameter selection.
We show that these generalizations can, respectively, always perform at least as well as always performing retraining or never performing retraining.
arXiv Detail & Related papers (2023-01-12T16:37:12Z) - Don't Explain Noise: Robust Counterfactuals for Randomized Ensembles [50.81061839052459]
We formalize the generation of robust counterfactual explanations as a probabilistic problem.
We show the link between the robustness of ensemble models and the robustness of base learners.
Our method achieves high robustness with only a small increase in the distance from counterfactual explanations to their initial observations.
arXiv Detail & Related papers (2022-05-27T17:28:54Z) - Robustly-reliable learners under poisoning attacks [38.55373038919402]
We show how to achieve strong robustness guarantees in the face of such attacks across multiple axes.
We provide robustly-reliable predictions, in which the predicted label is guaranteed to be correct so long as the adversary has not exceeded a given corruption budget.
Remarkably we provide a complete characterization of learnability in this setting, in particular, nearly-tight matching upper and lower bounds on the region that can be certified.
arXiv Detail & Related papers (2022-03-08T15:43:33Z) - Reachable Sets of Classifiers and Regression Models: (Non-)Robustness
Analysis and Robust Training [1.0878040851638]
We analyze and enhance robustness properties of both classifiers and regression models.
Specifically, we verify (non-)robustness, propose a robust training procedure, and show that our approach outperforms adversarial attacks.
Second, we provide techniques to distinguish between reliable and non-reliable predictions for unlabeled inputs, to quantify the influence of each feature on a prediction, and compute a feature ranking.
arXiv Detail & Related papers (2020-07-28T10:58:06Z) - Progressive Identification of True Labels for Partial-Label Learning [112.94467491335611]
Partial-label learning (PLL) is a typical weakly supervised learning problem, where each training instance is equipped with a set of candidate labels among which only one is the true label.
Most existing methods elaborately designed as constrained optimizations that must be solved in specific manners, making their computational complexity a bottleneck for scaling up to big data.
This paper proposes a novel framework of classifier with flexibility on the model and optimization algorithm.
arXiv Detail & Related papers (2020-02-19T08:35:15Z) - Regularized Training and Tight Certification for Randomized Smoothed
Classifier with Provable Robustness [15.38718018477333]
We derive a new regularized risk, in which the regularizer can adaptively encourage the accuracy and robustness of the smoothed counterpart.
We also design a new certification algorithm, which can leverage the regularization effect to provide tighter robustness lower bound that holds with high probability.
arXiv Detail & Related papers (2020-02-17T20:54:34Z) - Certified Robustness to Label-Flipping Attacks via Randomized Smoothing [105.91827623768724]
Machine learning algorithms are susceptible to data poisoning attacks.
We present a unifying view of randomized smoothing over arbitrary functions.
We propose a new strategy for building classifiers that are pointwise-certifiably robust to general data poisoning attacks.
arXiv Detail & Related papers (2020-02-07T21:28:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.