論文の概要: STACKFEED: Structured Textual Actor-Critic Knowledge Base Editing with FeedBack
- arxiv url: http://arxiv.org/abs/2410.10584v2
- Date: Sat, 01 Nov 2025 20:17:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-04 18:19:02.680577
- Title: STACKFEED: Structured Textual Actor-Critic Knowledge Base Editing with FeedBack
- Title(参考訳): STACKFEED:FeedBackによる構造化テキストアクター批判的知識ベース編集
- Authors: Shashank Kirtania, Naman Gupta, Priyanshu Gupta, Krishna Kariya, Sumit Gulwani, Arun Iyer, Suresh Parthasarathy, Arjun Radhakrishna, Sriram K. Rajamani, Gustavo Soares,
- Abstract要約: FEED(英: Structured Textual Actor-Critic Knowledge base editing with FEEDback approach)は、構造化テキストアクター・クリティカルな知識ベースの編集である。
FEEDは、専門家のフィードバックに基づいて知識ベースを洗練し、マルチアクタ、集中型批評家強化学習フレームワークを使用する。
FEEDはRAGシステムの品質と性能を大幅に改善する。
- 参考スコア(独自算出の注目度): 9.207360247989346
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) often generate incorrect or outdated information, especially in low-resource settings or when dealing with private data. To address this, Retrieval-Augmented Generation (RAG) uses external knowledge bases (KBs), but these can also suffer from inaccuracies. We introduce STACKFEED, a novel Structured Textual Actor-Critic Knowledge base editing with FEEDback approach that iteratively refines the KB based on expert feedback using a multi-actor, centralized critic reinforcement learning framework. STACKFEED defines a ReACT actor agent on each document to perform structured edits based on document specific targeted instructions. Experimental results showcase that STACKFEED significantly improves KB quality and performance of the RAG system. We evaluate STACKFEED on low-resource programming problems, modified python packaged and factual question-answering tasks.
- Abstract(参考訳): 大規模言語モデル(LLM)は、特に低リソース設定やプライベートデータを扱う場合、誤った情報や時代遅れの情報を生成することが多い。
これを解決するために、Retrieval-Augmented Generation (RAG)は外部知識ベース(KB)を使用しているが、これらは不正確である。
STACKFEED(Structured Textual Actor-Critic Knowledge Base Editor with FEEDback approach)を紹介する。
STACKFEEDは、ドキュメント固有のターゲット命令に基づいて構造化された編集を行うために、各ドキュメントにReACTアクターエージェントを定義する。
実験の結果,STACKFEEDはRAGシステムのKB品質と性能を著しく向上させることがわかった。
我々はSTACKFEEDを低リソースプログラミング問題、修正されたpythonパッケージ、実際の質問応答タスクで評価する。
関連論文リスト
- KARE-RAG: Knowledge-Aware Refinement and Enhancement for RAG [63.82127103851471]
Retrieval-Augmented Generation (RAG)は、大規模言語モデルがより広範な知識ソースにアクセスすることを可能にする。
ノイズの多いコンテンツを処理するために生成モデルの能力を向上させることは、ロバストなパフォーマンスに等しく重要であることを実証する。
本稿では,3つの重要なイノベーションを通じて知識利用を改善するKARE-RAGを提案する。
論文 参考訳(メタデータ) (2025-06-03T06:31:17Z) - Context-Robust Knowledge Editing for Language Models [10.634048842551662]
知識編集手法のコンテキストロバスト性を評価するためのベンチマークであるCHEDを開発した。
CHEDの評価は、先行するコンテキストが存在するときにしばしば失敗することを示している。
我々はコンテキストの堅牢性を高めるために設計されたKE手法であるCoREを紹介する。
論文 参考訳(メタデータ) (2025-05-29T03:11:53Z) - Related Knowledge Perturbation Matters: Rethinking Multiple Pieces of Knowledge Editing in Same-Subject [49.559994791305535]
現在最先端の編集手法は、複数の関連知識を同じ主題に編集する作業で苦労している。
本稿では,textS2textRKE$(Same-Subject Related Knowledge Editing)ベンチマークを紹介する。
実験の結果,ROMやMEMITのような主流の位置情報編集手法だけが「関連する知識の摂動」を示すことがわかった。
論文 参考訳(メタデータ) (2025-02-08T04:47:17Z) - KBAlign: Efficient Self Adaptation on Specific Knowledge Bases [73.34893326181046]
本稿では,効率的なモデル適応によりRAGシステムを強化する自己教師型フレームワークKBAlignを提案する。
私たちのキーとなる洞察は、2つの革新的なメカニズムを通じて、モデルの本質的な能力を知識の整合性に活用することです。
KBAlign は GPT-4 による適応によって得られる性能向上の90%を達成できることを示した。
論文 参考訳(メタデータ) (2024-11-22T08:21:03Z) - Keys to Robust Edits: from Theoretical Insights to Practical Advances [20.10464264597003]
大規模言語モデル(LLM)は知識の記憶と検索に革命をもたらしたが、矛盾や時代遅れな情報に対する課題に直面している。
本研究は、位置・エディット法における故障の原因を調査し、それらのキー・バリュー・モデリングに関する理論的知見を提供する。
経験的分析により、現在のメソッドで使われるキーは堅牢性と特異性要件を満たすことができないことが明らかになった。
論文 参考訳(メタデータ) (2024-10-12T02:54:12Z) - Retrieving, Rethinking and Revising: The Chain-of-Verification Can Improve Retrieval Augmented Generation [38.80878966092216]
大規模言語モデル(LLM)の強化を目的とした最近の検索拡張生成(RAG)
本稿では,外部検索の正しさと内部生成の整合性を高めるためのチェーン・オブ・バリフィケーション(CoV-RAG)を提案する。
論文 参考訳(メタデータ) (2024-10-08T08:34:54Z) - Everything is Editable: Extend Knowledge Editing to Unstructured Data in Large Language Models [65.10456412127405]
現実世界の知識の大部分は、構造化されていない形式で保存される。
ローカル層キーバリューストレージや項駆動最適化のような技術は、構造化されていない知識を扱うのに有効ではない。
本研究では,非構造化知識編集手法,すなわちUnKEを提案する。
論文 参考訳(メタデータ) (2024-05-24T08:42:40Z) - CRUD-RAG: A Comprehensive Chinese Benchmark for Retrieval-Augmented Generation of Large Language Models [49.16989035566899]
Retrieval-Augmented Generation (RAG)は、大規模言語モデル(LLM)の能力を高める技術である。
本稿では,大規模かつ包括的なベンチマークを構築し,様々なRAGアプリケーションシナリオにおけるRAGシステムのすべてのコンポーネントを評価する。
論文 参考訳(メタデータ) (2024-01-30T14:25:32Z) - CritiqueLLM: Towards an Informative Critique Generation Model for Evaluation of Large Language Model Generation [87.44350003888646]
Eval-Instructは、疑似参照でポイントワイズした批評を取得し、マルチパスプロンプトを通じてこれらの批評を修正できる。
CritiqueLLMは、ChatGPTとすべてのオープンソースベースラインを上回るように実証的に示されています。
論文 参考訳(メタデータ) (2023-11-30T16:52:42Z) - Bridging the KB-Text Gap: Leveraging Structured Knowledge-aware
Pre-training for KBQA [28.642711264323786]
テキストと構造化KBのギャップを埋める構造化知識認識事前学習法(SKP)を提案する。
事前学習の段階では、複雑な部分グラフの暗黙的関係とより良い表現を効果的に学習するためにモデルを導くという、2つの新しい構造化された知識認識タスクを導入する。
下流KBQAタスクでは、より効率的な線形化戦略とインターバルアテンション機構を設計し、複雑なサブグラフの符号化を支援する。
論文 参考訳(メタデータ) (2023-08-28T09:22:02Z) - DocTER: Evaluating Document-based Knowledge Editing [53.14000724633775]
本稿では,手作業で3つの文書をラベル付けするのではなく,簡単にアクセスできる文書を用いた知識編集について検討する。
総合的な4つのパースペクティブ評価: 編集成功、局所性、推論、言語間移動。
一般的な知識編集手法の実験は、文書による編集が三重項を使用するよりもはるかに大きな課題を示すことを示した。
論文 参考訳(メタデータ) (2023-08-19T09:17:19Z) - Mapping and Cleaning Open Commonsense Knowledge Bases with Generative
Translation [14.678465723838599]
特にオープン情報抽出(OpenIE)は、テキストから構造を誘導するためにしばしば用いられる。
OpenIEには、オープンエンドで非標準化された関係が含まれており、抽出された知識の下流での搾取を困難にしている。
本稿では,言語モデルを訓練し,オープンな言語から固定的なアサーションを生成することによって,生成的翻訳による問題にアプローチすることを提案する。
論文 参考訳(メタデータ) (2023-06-22T09:42:54Z) - Enriching Relation Extraction with OpenIE [70.52564277675056]
関係抽出(RE)は情報抽出(IE)のサブ分野である
本稿では,オープン情報抽出(OpenIE)の最近の取り組みがREの課題の改善にどのように役立つかを検討する。
本稿では,2つの注釈付きコーパスであるKnowledgeNetとFewRelを用いた実験により,拡張モデルの精度向上を実証した。
論文 参考訳(メタデータ) (2022-12-19T11:26:23Z) - CORE: A Retrieve-then-Edit Framework for Counterfactual Data Generation [91.16551253297588]
Counterfactual Generation via Retrieval and Editing (CORE) は、トレーニングのための多様な反事実摂動を生成するための検索強化された生成フレームワークである。
COREはまず、学習されたバイエンコーダを用いて、タスク関連未ラベルテキストコーパス上で密集した検索を行う。
COREはこれらを、反ファクト編集のために、数ショットの学習機能を備えた大規模な言語モデルへのプロンプトに組み込む。
論文 参考訳(メタデータ) (2022-10-10T17:45:38Z) - EditEval: An Instruction-Based Benchmark for Text Improvements [73.5918084416016]
編集機能の自動評価のためのインストラクションベース、ベンチマーク、評価スイートであるEditEvalを提示する。
InstructGPTとPEERが最良であることを示す事前学習モデルをいくつか評価するが,ほとんどのベースラインは教師付きSOTA以下である。
我々の分析は、タスクの編集によく使われるメトリクスが必ずしも相関しているとは限らないことを示し、最高の性能を持つプロンプトに対する最適化は、必ずしも異なるモデルに対して強い堅牢性を持つとは限らないことを示唆している。
論文 参考訳(メタデータ) (2022-09-27T12:26:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。