Generative AI and Its Impact on Personalized Intelligent Tutoring Systems
- URL: http://arxiv.org/abs/2410.10650v1
- Date: Mon, 14 Oct 2024 16:01:01 GMT
- Title: Generative AI and Its Impact on Personalized Intelligent Tutoring Systems
- Authors: Subhankar Maity, Aniket Deroy,
- Abstract summary: Generative AI enables personalized education through dynamic content generation, real-time feedback, and adaptive learning pathways.
Report explores key applications such as automated question generation, customized feedback mechanisms, and interactive dialogue systems.
Future directions highlight the potential advancements in multimodal AI integration, emotional intelligence in tutoring systems, and the ethical implications of AI-driven education.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generative Artificial Intelligence (AI) is revolutionizing educational technology by enabling highly personalized and adaptive learning environments within Intelligent Tutoring Systems (ITS). This report delves into the integration of Generative AI, particularly large language models (LLMs) like GPT-4, into ITS to enhance personalized education through dynamic content generation, real-time feedback, and adaptive learning pathways. We explore key applications such as automated question generation, customized feedback mechanisms, and interactive dialogue systems that respond to individual learner needs. The report also addresses significant challenges, including ensuring pedagogical accuracy, mitigating inherent biases in AI models, and maintaining learner engagement. Future directions highlight the potential advancements in multimodal AI integration, emotional intelligence in tutoring systems, and the ethical implications of AI-driven education. By synthesizing current research and practical implementations, this report underscores the transformative potential of Generative AI in creating more effective, equitable, and engaging educational experiences.
Related papers
- Human-Centric eXplainable AI in Education [0.0]
This paper explores Human-Centric eXplainable AI (HCXAI) in the educational landscape.
It emphasizes its role in enhancing learning outcomes, fostering trust among users, and ensuring transparency in AI-driven tools.
It outlines comprehensive frameworks for developing HCXAI systems that prioritize user understanding and engagement.
arXiv Detail & Related papers (2024-10-18T14:02:47Z) - From MOOC to MAIC: Reshaping Online Teaching and Learning through LLM-driven Agents [78.15899922698631]
MAIC (Massive AI-empowered Course) is a new form of online education that leverages LLM-driven multi-agent systems to construct an AI-augmented classroom.
We conduct preliminary experiments at Tsinghua University, one of China's leading universities.
arXiv Detail & Related papers (2024-09-05T13:22:51Z) - AI-Tutoring in Software Engineering Education [0.7631288333466648]
We conducted an exploratory case study by integrating the GPT-3.5-Turbo model as an AI-Tutor within the APAS Artemis.
The findings highlight advantages, such as timely feedback and scalability.
However, challenges like generic responses and students' concerns about a learning progress inhibition when using the AI-Tutor were also evident.
arXiv Detail & Related papers (2024-04-03T08:15:08Z) - Generative AI and Its Educational Implications [0.0]
We discuss the implications of generative AI on education across four critical sections.
We propose ways in which generative AI can transform the educational landscape.
Acknowledging the societal impact, we emphasize the need for updating curricula.
arXiv Detail & Related papers (2023-12-26T21:29:31Z) - Multimodality of AI for Education: Towards Artificial General
Intelligence [14.121655991753483]
multimodal artificial intelligence (AI) approaches are paving the way towards the realization of Artificial General Intelligence (AGI) in educational contexts.
This research delves deeply into the key facets of AGI, including cognitive frameworks, advanced knowledge representation, adaptive learning mechanisms, and the integration of diverse multimodal data sources.
The paper also discusses the implications of multimodal AI's role in education, offering insights into future directions and challenges in AGI development.
arXiv Detail & Related papers (2023-12-10T23:32:55Z) - Artificial Intelligence-Enabled Intelligent Assistant for Personalized
and Adaptive Learning in Higher Education [0.2812395851874055]
This paper presents a novel framework, Artificial Intelligence-Enabled Intelligent Assistant (AIIA) for personalized and adaptive learning in higher education.
The AIIA system leverages advanced AI and Natural Language Processing (NLP) techniques to create an interactive and engaging learning platform.
arXiv Detail & Related papers (2023-09-19T19:31:15Z) - The Future of Fundamental Science Led by Generative Closed-Loop
Artificial Intelligence [67.70415658080121]
Recent advances in machine learning and AI are disrupting technological innovation, product development, and society as a whole.
AI has contributed less to fundamental science in part because large data sets of high-quality data for scientific practice and model discovery are more difficult to access.
Here we explore and investigate aspects of an AI-driven, automated, closed-loop approach to scientific discovery.
arXiv Detail & Related papers (2023-07-09T21:16:56Z) - Large Language Models Empowered Autonomous Edge AI for Connected
Intelligence [51.269276328087855]
Edge artificial intelligence (Edge AI) is a promising solution to achieve connected intelligence.
This article presents a vision of autonomous edge AI systems that automatically organize, adapt, and optimize themselves to meet users' diverse requirements.
arXiv Detail & Related papers (2023-07-06T05:16:55Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
This paper proposes a comprehensive analysis of existing concepts coming from different disciplines tackling the notion of intelligence.
The aim is to identify shared notions or discrepancies to consider for qualifying AI systems.
arXiv Detail & Related papers (2021-05-07T12:01:31Z) - Future Trends for Human-AI Collaboration: A Comprehensive Taxonomy of
AI/AGI Using Multiple Intelligences and Learning Styles [95.58955174499371]
We describe various aspects of multiple human intelligences and learning styles, which may impact on a variety of AI problem domains.
Future AI systems will be able not only to communicate with human users and each other, but also to efficiently exchange knowledge and wisdom.
arXiv Detail & Related papers (2020-08-07T21:00:13Z) - Distributed and Democratized Learning: Philosophy and Research
Challenges [80.39805582015133]
We propose a novel design philosophy called democratized learning (Dem-AI)
Inspired by the societal groups of humans, the specialized groups of learning agents in the proposed Dem-AI system are self-organized in a hierarchical structure to collectively perform learning tasks more efficiently.
We present a reference design as a guideline to realize future Dem-AI systems, inspired by various interdisciplinary fields.
arXiv Detail & Related papers (2020-03-18T08:45:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.