QueST: Querying Functional and Structural Niches on Spatial Transcriptomics Data via Contrastive Subgraph Embedding
- URL: http://arxiv.org/abs/2410.10652v1
- Date: Mon, 14 Oct 2024 16:01:27 GMT
- Title: QueST: Querying Functional and Structural Niches on Spatial Transcriptomics Data via Contrastive Subgraph Embedding
- Authors: Mo Chen, Minsheng Hao, Xuegong Zhang, Lei Wei,
- Abstract summary: QueST is a novel niche representation learning model designed for querying spatial niches across multiple samples.
We evaluate QueST on established benchmarks using human and mouse datasets.
QueST offers a specialized model for spatial niche queries, paving the way for deeper insights into the patterns and mechanisms of cell spatial organization across tissues.
- Score: 6.579597615392464
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The functional or structural spatial regions within tissues, referred to as spatial niches, are elements for illustrating the spatial contexts of multicellular organisms. A key challenge is querying shared niches across diverse tissues, which is crucial for achieving a comprehensive understanding of the organization and phenotypes of cell populations. However, current data analysis methods predominantly focus on creating spatial-aware embeddings for cells, neglecting the development of niche-level representations for effective querying. To address this gap, we introduce QueST, a novel niche representation learning model designed for querying spatial niches across multiple samples. QueST utilizes a novel subgraph contrastive learning approach to explicitly capture niche-level characteristics and incorporates adversarial training to mitigate batch effects. We evaluate QueST on established benchmarks using human and mouse datasets, demonstrating its superiority over state-of-the-art graph representation learning methods in accurate niche queries. Overall, QueST offers a specialized model for spatial niche queries, paving the way for deeper insights into the patterns and mechanisms of cell spatial organization across tissues. Source code can be found at https://github.com/cmhimself/QueST.
Related papers
- Multi-modal Spatial Clustering for Spatial Transcriptomics Utilizing High-resolution Histology Images [1.3124513975412255]
spatial transcriptomics (ST) enables transcriptome-wide gene expression profiling while preserving spatial context.
Current spatial clustering methods fail to fully integrate high-resolution histology image features with gene expression data.
We propose a novel contrastive learning-based deep learning approach that integrates gene expression data with histology image features.
arXiv Detail & Related papers (2024-10-31T00:32:24Z) - Decoding Diffusion: A Scalable Framework for Unsupervised Analysis of Latent Space Biases and Representations Using Natural Language Prompts [68.48103545146127]
This paper proposes a novel framework for unsupervised exploration of diffusion latent spaces.
We directly leverage natural language prompts and image captions to map latent directions.
Our method provides a more scalable and interpretable understanding of the semantic knowledge encoded within diffusion models.
arXiv Detail & Related papers (2024-10-25T21:44:51Z) - Few-Shot Learning for Annotation-Efficient Nucleus Instance Segmentation [50.407071700154674]
We propose to formulate annotation-efficient nucleus instance segmentation from the perspective of few-shot learning (FSL)
Our work was motivated by that, with the prosperity of computational pathology, an increasing number of fully-annotated datasets are publicly accessible.
Extensive experiments on a couple of publicly accessible datasets demonstrate that SGFSIS can outperform other annotation-efficient learning baselines.
arXiv Detail & Related papers (2024-02-26T03:49:18Z) - Towards Spatially-Lucid AI Classification in Non-Euclidean Space: An
Application for MxIF Oncology Data [3.0566763412020714]
Given multi-category point sets from different place-types, our goal is to develop a spatially-lucid classifier.
This problem is important for many applications, such as oncology, for analyzing immune-tumor relationships and designing new immunotherapies.
We explore a spatial ensemble framework that explicitly uses different training strategies, including weighted-distance learning rate and spatial domain adaptation.
arXiv Detail & Related papers (2024-02-22T21:22:21Z) - Must: Maximizing Latent Capacity of Spatial Transcriptomics Data [41.70354088000952]
This paper introduces Multiple-modality Structure Transformation, named MuST, a novel methodology to tackle the challenge.
It integrates the multi-modality information contained in the ST data effectively into a uniform latent space to provide a foundation for all the downstream tasks.
The results show that it outperforms existing state-of-the-art methods with clear advantages in the precision of identifying and preserving structures of tissues and biomarkers.
arXiv Detail & Related papers (2024-01-15T09:07:28Z) - Self-Supervised Learning of Representations for Space Generates
Multi-Modular Grid Cells [16.208253624969142]
mammalian lineage has developed striking spatial representations.
One important spatial representation is the Nobel-prize winning grid cells.
Nobel-prize winning grid cells represent self-location, a local and aperiodic quantity.
arXiv Detail & Related papers (2023-11-04T03:59:37Z) - Learning Invariant Molecular Representation in Latent Discrete Space [52.13724532622099]
We propose a new framework for learning molecular representations that exhibit invariance and robustness against distribution shifts.
Our model achieves stronger generalization against state-of-the-art baselines in the presence of various distribution shifts.
arXiv Detail & Related papers (2023-10-22T04:06:44Z) - Contrastive Neighborhood Alignment [81.65103777329874]
We present Contrastive Neighborhood Alignment (CNA), a manifold learning approach to maintain the topology of learned features.
The target model aims to mimic the local structure of the source representation space using a contrastive loss.
CNA is illustrated in three scenarios: manifold learning, where the model maintains the local topology of the original data in a dimension-reduced space; model distillation, where a small student model is trained to mimic a larger teacher; and legacy model update, where an older model is replaced by a more powerful one.
arXiv Detail & Related papers (2022-01-06T04:58:31Z) - Multi-Class Cell Detection Using Spatial Context Representation [23.542218679448624]
In digital pathology, both detection and classification of cells are important for automatic diagnostic and prognostic tasks.
Existing methods focus on morphological appearance of individual cells, whereas in practice pathologists often infer cell classes through their spatial context.
We propose a novel method for both detection and classification that explicitly incorporates spatial contextual information.
arXiv Detail & Related papers (2021-10-10T19:54:40Z) - Low-Rank Subspaces in GANs [101.48350547067628]
This work introduces low-rank subspaces that enable more precise control of GAN generation.
LowRankGAN is able to find the low-dimensional representation of attribute manifold.
Experiments on state-of-the-art GAN models (including StyleGAN2 and BigGAN) trained on various datasets demonstrate the effectiveness of our LowRankGAN.
arXiv Detail & Related papers (2021-06-08T16:16:32Z) - Spatial-Temporal Correlation and Topology Learning for Person
Re-Identification in Videos [78.45050529204701]
We propose a novel framework to pursue discriminative and robust representation by modeling cross-scale spatial-temporal correlation.
CTL utilizes a CNN backbone and a key-points estimator to extract semantic local features from human body.
It explores a context-reinforced topology to construct multi-scale graphs by considering both global contextual information and physical connections of human body.
arXiv Detail & Related papers (2021-04-15T14:32:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.