Large Language Model Evaluation via Matrix Nuclear-Norm
- URL: http://arxiv.org/abs/2410.10672v2
- Date: Sun, 08 Dec 2024 16:18:49 GMT
- Title: Large Language Model Evaluation via Matrix Nuclear-Norm
- Authors: Yahan Li, Tingyu Xia, Yi Chang, Yuan Wu,
- Abstract summary: We introduce the Matrix Nuclear-Norm, which serves as a metric to quantify the data compression proficiency of large language models (LLMs)
By employing the ( L_1,2text-norm ) to further approximate the nuclear norm, we can effectively assess the model's information compression capabilities.
The Matrix Nuclear-Norm achieves speeds 8 to 24 times faster than Matrix Entropy for the CEREBRAS-GPT model as sizes increase from 111M to 6.7B.
- Score: 11.878496378814045
- License:
- Abstract: As large language models (LLMs) continue to evolve, efficient evaluation metrics are vital for assessing their ability to compress information and reduce redundancy. While traditional metrics like Matrix Entropy offer valuable insights, they are computationally intensive for large-scale models due to their \( O(n^3) \) time complexity with Singular Value Decomposition (SVD). To mitigate this issue, we introduce the Matrix Nuclear-Norm, which not only serves as a metric to quantify the data compression proficiency of LLM but also provides a convex approximation of matrix rank to capture both predictive discriminability and diversity. By employing the \( L_{1,2}\text{-norm} \) to further approximate the nuclear norm, we can effectively assess the model's information compression capabilities. This approach reduces the time complexity to \( O(n^2) \) and eliminates the need for SVD computation. Consequently, the Matrix Nuclear-Norm achieves speeds 8 to 24 times faster than Matrix Entropy for the CEREBRAS-GPT model as sizes increase from 111M to 6.7B. This performance gap becomes more pronounced with larger models, as validated in tests with other models like Pythia. Additionally, evaluations on benchmarks and model responses confirm that our proposed Matrix Nuclear-Norm is a reliable, scalable, and efficient tool for assessing LLMs' performance, striking a balance between accuracy and computational efficiency. The code is available at https://github.com/MLGroupJLU/MatrixNuclearNorm.
Related papers
- Reweighted Time-Evolving Block Decimation for Improved Quantum Dynamics Simulations [0.0]
We introduce a simple yet significant improvement to the time-evolving block decimation (TEBD) algorithm for simulating the time dynamics of 1D mixed quantum states.
We propose a reweighted TEBD algorithm that deprioritizes high-weight expectation values by a factor of $gamma-n$ during the truncation.
This simple modification makes rTEBD significantly more accurate than the TEBD time-dependent simulation of an MPDO, and competive with and sometimes better than TEBD using MPS.
arXiv Detail & Related papers (2024-12-11T19:01:00Z) - Combining Entropy and Matrix Nuclear Norm for Enhanced Evaluation of Language Models [0.0]
Large language models (LLMs) continue to advance, the need for precise and efficient evaluation metrics becomes more pressing.
Traditional approaches, while informative, often face limitations in computational demands and interpretability.
In this paper, we introduce a novel hybrid evaluation method that integrates two established techniques.
arXiv Detail & Related papers (2024-10-18T14:03:52Z) - Tailed Low-Rank Matrix Factorization for Similarity Matrix Completion [14.542166904874147]
Similarity Completion Matrix serves as a fundamental tool at the core of numerous machinelearning tasks.
To address this issue, Similarity Matrix Theoretical (SMC) methods have been proposed, but they suffer complexity.
We present two novel, scalable, and effective algorithms, which investigate the PSD property to guide the estimation process and incorporate non low-rank regularizer to ensure the low-rank solution.
arXiv Detail & Related papers (2024-09-29T04:27:23Z) - Compute Better Spent: Replacing Dense Layers with Structured Matrices [77.61728033234233]
We identify more efficient alternatives to dense matrices, as exemplified by the success of convolutional networks in the image domain.
We show that different structures often require drastically different initialization scales and learning rates, which are crucial to performance.
We propose a novel matrix family containing Monarch matrices, the Block-Train, which we show performs better than dense for the same compute on multiple tasks.
arXiv Detail & Related papers (2024-06-10T13:25:43Z) - Proximal Symmetric Non-negative Latent Factor Analysis: A Novel Approach
to Highly-Accurate Representation of Undirected Weighted Networks [2.1797442801107056]
Undirected Weighted Network (UWN) is commonly found in big data-related applications.
Existing models fail in either modeling its intrinsic symmetry or low-data density.
Proximal Symmetric Nonnegative Latent-factor-analysis model is proposed.
arXiv Detail & Related papers (2023-06-06T13:03:24Z) - Direct Estimation of Parameters in ODE Models Using WENDy: Weak-form
Estimation of Nonlinear Dynamics [0.0]
We introduce the Weak-form Estimation of Dynamics (WENDy) method for estimating model parameters for non-linear systems of ODEs.
WENDy computes accurate estimates and is robust to large (biologically relevant) levels of measurement noise.
We demonstrate the high robustness and computational efficiency by applying WENDy to estimate parameters in some common models from population biology, neuroscience, and biochemistry.
arXiv Detail & Related papers (2023-02-26T08:49:34Z) - Numerical Optimizations for Weighted Low-rank Estimation on Language
Model [73.12941276331316]
Singular value decomposition (SVD) is one of the most popular compression methods that approximates a target matrix with smaller matrices.
Standard SVD treats the parameters within the matrix with equal importance, which is a simple but unrealistic assumption.
We show that our method can perform better than current SOTA methods in neural-based language models.
arXiv Detail & Related papers (2022-11-02T00:58:02Z) - Language model compression with weighted low-rank factorization [73.61874728240568]
We introduce Fisher information to weigh the importance of parameters affecting the model prediction.
We find that our resulting task accuracy is much closer to the original model's performance.
Our method can directly compress a task-specific model while achieving better performance than other compact model strategies.
arXiv Detail & Related papers (2022-06-30T21:57:07Z) - Sketching as a Tool for Understanding and Accelerating Self-attention
for Long Sequences [52.6022911513076]
Transformer-based models are not efficient in processing long sequences due to the quadratic space and time complexity of the self-attention modules.
We propose Linformer and Informer to reduce the quadratic complexity to linear (modulo logarithmic factors) via low-dimensional projection and row selection.
Based on the theoretical analysis, we propose Skeinformer to accelerate self-attention and further improve the accuracy of matrix approximation to self-attention.
arXiv Detail & Related papers (2021-12-10T06:58:05Z) - Sparse PCA via $l_{2,p}$-Norm Regularization for Unsupervised Feature
Selection [138.97647716793333]
We propose a simple and efficient unsupervised feature selection method, by combining reconstruction error with $l_2,p$-norm regularization.
We present an efficient optimization algorithm to solve the proposed unsupervised model, and analyse the convergence and computational complexity of the algorithm theoretically.
arXiv Detail & Related papers (2020-12-29T04:08:38Z) - A Scalable, Adaptive and Sound Nonconvex Regularizer for Low-rank Matrix
Completion [60.52730146391456]
We propose a new non scalable low-rank regularizer called "nuclear Frobenius norm" regularizer, which is adaptive and sound.
It bypasses the computation of singular values and allows fast optimization by algorithms.
It obtains state-of-the-art recovery performance while being the fastest in existing matrix learning methods.
arXiv Detail & Related papers (2020-08-14T18:47:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.