LLMs know their vulnerabilities: Uncover Safety Gaps through Natural Distribution Shifts
- URL: http://arxiv.org/abs/2410.10700v2
- Date: Sun, 25 May 2025 06:25:28 GMT
- Title: LLMs know their vulnerabilities: Uncover Safety Gaps through Natural Distribution Shifts
- Authors: Qibing Ren, Hao Li, Dongrui Liu, Zhanxu Xie, Xiaoya Lu, Yu Qiao, Lei Sha, Junchi Yan, Lizhuang Ma, Jing Shao,
- Abstract summary: Safety concerns in large language models (LLMs) have gained significant attention due to their exposure to potentially harmful data during pre-training.<n>We identify a new safety vulnerability in LLMs, where seemingly benign prompts, semantically related to harmful content, can bypass safety mechanisms.<n>We introduce a novel attack method, textitActorBreaker, which identifies actors related to toxic prompts within pre-training distribution.
- Score: 88.96201324719205
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Safety concerns in large language models (LLMs) have gained significant attention due to their exposure to potentially harmful data during pre-training. In this paper, we identify a new safety vulnerability in LLMs: their susceptibility to \textit{natural distribution shifts} between attack prompts and original toxic prompts, where seemingly benign prompts, semantically related to harmful content, can bypass safety mechanisms. To explore this issue, we introduce a novel attack method, \textit{ActorBreaker}, which identifies actors related to toxic prompts within pre-training distribution to craft multi-turn prompts that gradually lead LLMs to reveal unsafe content. ActorBreaker is grounded in Latour's actor-network theory, encompassing both human and non-human actors to capture a broader range of vulnerabilities. Our experimental results demonstrate that ActorBreaker outperforms existing attack methods in terms of diversity, effectiveness, and efficiency across aligned LLMs. To address this vulnerability, we propose expanding safety training to cover a broader semantic space of toxic content. We thus construct a multi-turn safety dataset using ActorBreaker. Fine-tuning models on our dataset shows significant improvements in robustness, though with some trade-offs in utility. Code is available at https://github.com/AI45Lab/ActorAttack.
Related papers
- Why Not Act on What You Know? Unleashing Safety Potential of LLMs via Self-Aware Guard Enhancement [48.50995874445193]
Large Language Models (LLMs) have shown impressive capabilities across various tasks but remain vulnerable to meticulously crafted jailbreak attacks.<n>We propose SAGE (Self-Aware Guard Enhancement), a training-free defense strategy designed to align LLMs' strong safety discrimination performance with their relatively weaker safety generation ability.
arXiv Detail & Related papers (2025-05-17T15:54:52Z) - Playing the Fool: Jailbreaking LLMs and Multimodal LLMs with Out-of-Distribution Strategy [31.03584769307822]
We propose JOOD, a new Jailbreak framework via OOD-ifying inputs beyond the safety alignment.<n>Experiments across diverse jailbreak scenarios demonstrate that JOOD effectively jailbreaks recent proprietary LLMs and MLLMs.
arXiv Detail & Related papers (2025-03-26T01:25:24Z) - Improving LLM Safety Alignment with Dual-Objective Optimization [65.41451412400609]
Existing training-time safety alignment techniques for large language models (LLMs) remain vulnerable to jailbreak attacks.<n>We propose an improved safety alignment that disentangles DPO objectives into two components: (1) robust refusal training, which encourages refusal even when partial unsafe generations are produced, and (2) targeted unlearning of harmful knowledge.
arXiv Detail & Related papers (2025-03-05T18:01:05Z) - Reasoning-Augmented Conversation for Multi-Turn Jailbreak Attacks on Large Language Models [53.580928907886324]
Reasoning-Augmented Conversation is a novel multi-turn jailbreak framework.
It reformulates harmful queries into benign reasoning tasks.
We show that RACE achieves state-of-the-art attack effectiveness in complex conversational scenarios.
arXiv Detail & Related papers (2025-02-16T09:27:44Z) - Commercial LLM Agents Are Already Vulnerable to Simple Yet Dangerous Attacks [88.84977282952602]
A high volume of recent ML security literature focuses on attacks against aligned large language models (LLMs)<n>In this paper, we analyze security and privacy vulnerabilities that are unique to LLM agents.<n>We conduct a series of illustrative attacks on popular open-source and commercial agents, demonstrating the immediate practical implications of their vulnerabilities.
arXiv Detail & Related papers (2025-02-12T17:19:36Z) - `Do as I say not as I do': A Semi-Automated Approach for Jailbreak Prompt Attack against Multimodal LLMs [6.151779089440453]
We introduce the first voice-based jailbreak attack against multimodal large language models (LLMs)
We propose a novel strategy, in which the disallowed prompt is flanked by benign, narrative-driven prompts.
We demonstrate that Flanking Attack is capable of manipulating state-of-the-art LLMs into generating misaligned and forbidden outputs.
arXiv Detail & Related papers (2025-02-02T10:05:08Z) - Human-Readable Adversarial Prompts: An Investigation into LLM Vulnerabilities Using Situational Context [45.821481786228226]
We show that situation-driven adversarial full-prompts that leverage situational context are effective but much harder to detect.<n>We developed attacks that use movie scripts as situational contextual frameworks.<n>We enhanced the AdvPrompter framework with p-nucleus sampling to generate diverse human-readable adversarial texts.
arXiv Detail & Related papers (2024-12-20T21:43:52Z) - Targeting the Core: A Simple and Effective Method to Attack RAG-based Agents via Direct LLM Manipulation [4.241100280846233]
AI agents, powered by large language models (LLMs), have transformed human-computer interactions by enabling seamless, natural, and context-aware communication.<n>This paper investigates a critical vulnerability: adversarial attacks targeting the LLM core within AI agents.
arXiv Detail & Related papers (2024-12-05T18:38:30Z) - Mitigating the Backdoor Effect for Multi-Task Model Merging via Safety-Aware Subspace [15.457992715866995]
We propose a novel Defense-Aware Merging (DAM) approach that simultaneously mitigates task interference and backdoor vulnerabilities.
Compared to existing merging methods, DAM achieves a more favorable balance between performance and security, reducing the attack success rate by 2-10 percentage points.
arXiv Detail & Related papers (2024-10-17T00:13:31Z) - Cross-modality Information Check for Detecting Jailbreaking in Multimodal Large Language Models [17.663550432103534]
Multimodal Large Language Models (MLLMs) extend the capacity of LLMs to understand multimodal information comprehensively.
These models are susceptible to jailbreak attacks, where malicious users can break the safety alignment of the target model and generate misleading and harmful answers.
We propose Cross-modality Information DEtectoR (CIDER), a plug-and-play jailbreaking detector designed to identify maliciously perturbed image inputs.
arXiv Detail & Related papers (2024-07-31T15:02:46Z) - Purple-teaming LLMs with Adversarial Defender Training [57.535241000787416]
We present Purple-teaming LLMs with Adversarial Defender training (PAD)
PAD is a pipeline designed to safeguard LLMs by novelly incorporating the red-teaming (attack) and blue-teaming (safety training) techniques.
PAD significantly outperforms existing baselines in both finding effective attacks and establishing a robust safe guardrail.
arXiv Detail & Related papers (2024-07-01T23:25:30Z) - Learning diverse attacks on large language models for robust red-teaming and safety tuning [126.32539952157083]
Red-teaming, or identifying prompts that elicit harmful responses, is a critical step in ensuring the safe deployment of large language models.
We show that even with explicit regularization to favor novelty and diversity, existing approaches suffer from mode collapse or fail to generate effective attacks.
We propose to use GFlowNet fine-tuning, followed by a secondary smoothing phase, to train the attacker model to generate diverse and effective attack prompts.
arXiv Detail & Related papers (2024-05-28T19:16:17Z) - ASETF: A Novel Method for Jailbreak Attack on LLMs through Translate Suffix Embeddings [58.82536530615557]
We propose an Adversarial Suffix Embedding Translation Framework (ASETF) to transform continuous adversarial suffix embeddings into coherent and understandable text.
Our method significantly reduces the computation time of adversarial suffixes and achieves a much better attack success rate to existing techniques.
arXiv Detail & Related papers (2024-02-25T06:46:27Z) - Coercing LLMs to do and reveal (almost) anything [80.8601180293558]
It has been shown that adversarial attacks on large language models (LLMs) can "jailbreak" the model into making harmful statements.
We argue that the spectrum of adversarial attacks on LLMs is much larger than merely jailbreaking.
arXiv Detail & Related papers (2024-02-21T18:59:13Z) - Large Language Models are Vulnerable to Bait-and-Switch Attacks for
Generating Harmful Content [33.99403318079253]
Even safe text coming from large language models can be turned into potentially dangerous content through Bait-and-Switch attacks.
The alarming efficacy of this approach highlights a significant challenge in developing reliable safety guardrails for LLMs.
arXiv Detail & Related papers (2024-02-21T16:46:36Z) - Leveraging the Context through Multi-Round Interactions for Jailbreaking Attacks [55.603893267803265]
Large Language Models (LLMs) are susceptible to Jailbreaking attacks.
Jailbreaking attacks aim to extract harmful information by subtly modifying the attack query.
We focus on a new attack form, called Contextual Interaction Attack.
arXiv Detail & Related papers (2024-02-14T13:45:19Z) - Benchmarking and Defending Against Indirect Prompt Injection Attacks on Large Language Models [79.0183835295533]
We introduce the first benchmark for indirect prompt injection attacks, named BIPIA, to assess the risk of such vulnerabilities.<n>Our analysis identifies two key factors contributing to their success: LLMs' inability to distinguish between informational context and actionable instructions, and their lack of awareness in avoiding the execution of instructions within external content.<n>We propose two novel defense mechanisms-boundary awareness and explicit reminder-to address these vulnerabilities in both black-box and white-box settings.
arXiv Detail & Related papers (2023-12-21T01:08:39Z) - Universal and Transferable Adversarial Attacks on Aligned Language
Models [118.41733208825278]
We propose a simple and effective attack method that causes aligned language models to generate objectionable behaviors.
Surprisingly, we find that the adversarial prompts generated by our approach are quite transferable.
arXiv Detail & Related papers (2023-07-27T17:49:12Z) - Widen The Backdoor To Let More Attackers In [24.540853975732922]
We investigate the scenario of a multi-agent backdoor attack, where multiple non-colluding attackers craft and insert triggered samples in a shared dataset.
We discover a clear backfiring phenomenon: increasing the number of attackers shrinks each attacker's attack success rate.
We then exploit this phenomenon to minimize the collective ASR of attackers and maximize defender's robustness accuracy.
arXiv Detail & Related papers (2021-10-09T13:53:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.