論文の概要: Early Diagnoses of Acute Lymphoblastic Leukemia Using YOLOv8 and YOLOv11 Deep Learning Models
- arxiv url: http://arxiv.org/abs/2410.10701v1
- Date: Mon, 14 Oct 2024 16:42:07 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-29 20:05:09.772447
- Title: Early Diagnoses of Acute Lymphoblastic Leukemia Using YOLOv8 and YOLOv11 Deep Learning Models
- Title(参考訳): YOLOv8およびYOLOv11ディープラーニングモデルを用いた急性リンパ性白血病の早期診断
- Authors: Alaa Awad, Mohamed Hegazy, Salah A. Aly,
- Abstract要約: 本研究は,急性リンパ芽球性白血病(ALL)に対する画像処理および深層学習技術の応用について検討する。
この研究は、特に最新のYOLOシリーズモデルを用いたALL検出の最近の発展に焦点を当てている。
YOLOv8やYOLOv11のような高度なディープラーニングモデルを利用することで、高い精度で98.8%に達することができる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Thousands of individuals succumb annually to leukemia alone. This study explores the application of image processing and deep learning techniques for detecting Acute Lymphoblastic Leukemia (ALL), a severe form of blood cancer responsible for numerous annual fatalities. As artificial intelligence technologies advance, the research investigates the reliability of these methods in real-world scenarios. The study focuses on recent developments in ALL detection, particularly using the latest YOLO series models, to distinguish between malignant and benign white blood cells and to identify different stages of ALL, including early stages. Additionally, the models are capable of detecting hematogones, which are often misclassified as ALL. By utilizing advanced deep learning models like YOLOv8 and YOLOv11, the study achieves high accuracy rates reaching 98.8%, demonstrating the effectiveness of these algorithms across multiple datasets and various real-world situations.
- Abstract(参考訳): 毎年数千人が白血病に罹患している。
本研究は, 急性リンパ性白血病(ALL)に対する画像処理および深層学習技術の応用について検討した。
人工知能技術が進歩するにつれて、現実世界のシナリオにおけるこれらの手法の信頼性が研究される。
この研究は、特に最新のYOLOシリーズモデルを用いて、悪性と良性白血球を区別し、早期を含むALLの異なるステージを特定するために、ALL検出の最近の発展に焦点を当てている。
さらに、これらのモデルは、しばしばALLと誤分類されるヘマトゴンを検出することができる。
YOLOv8やYOLOv11のような高度なディープラーニングモデルを利用することで、高い精度で98.8%に達し、これらのアルゴリズムが複数のデータセットやさまざまな実世界の状況で有効であることを実証した。
関連論文リスト
- Advanced Hybrid Deep Learning Model for Enhanced Classification of Osteosarcoma Histopathology Images [0.0]
本研究は, 小児および思春期において最も多い骨癌である骨肉腫(OS)に焦点を当て, 腕と足の長い骨に影響を及ぼす。
我々は、OSの診断精度を向上させるために、畳み込みニューラルネットワーク(CNN)と視覚変換器(ViT)を組み合わせた新しいハイブリッドモデルを提案する。
このモデルは精度99.08%、精度99.10%、リコール99.28%、F1スコア99.23%を達成した。
論文 参考訳(メタデータ) (2024-10-29T13:54:08Z) - A Hybrid Feature Fusion Deep Learning Framework for Leukemia Cancer Detection in Microscopic Blood Sample Using Gated Recurrent Unit and Uncertainty Quantification [1.024113475677323]
白血病は、顕微鏡で血液や骨髄の腫れを分析して診断され、さらなる細胞化学的検査によって確認される。
深層学習は、白血病細胞の検出を補助する、顕微鏡スミア画像を分類する高度な方法を提供している。
本研究では,急性リンパ性白血病(ALL)の分類のためのハイブリッドディープラーニングモデルを構築した。
提案手法は、ALL-IDB1データセットで100%、ALL-IDB2データセットで98.07%、組み合わせたデータセットで98.64%という顕著な検出精度を達成した。
論文 参考訳(メタデータ) (2024-10-18T15:23:34Z) - Enhancing Wrist Fracture Detection with YOLO [3.2049746597433746]
この研究では、最先端の単一ステージのディープニューラルネットワークに基づく検出モデルYOLOv5、YOLOv6、YOLOv7、YOLOv8を用いて、手首の異常を検出する。
これらのYOLOモデルは, フラクチャー検出において, 一般的に使われている2段検出アルゴリズムであるFaster R-CNNよりも優れていることがわかった。
論文 参考訳(メタデータ) (2024-07-17T14:21:53Z) - Analysis of Modern Computer Vision Models for Blood Cell Classification [49.1574468325115]
この研究では、MaxVit、EfficientVit、EfficientNet、EfficientNetV2、MobileNetV3といった最先端アーキテクチャを使用して、迅速かつ正確な結果を得る。
本手法は,従来の手法の速度と精度の懸念に対処するだけでなく,血液学的解析における革新的な深層学習モデルの適用性についても検討する。
論文 参考訳(メタデータ) (2024-06-30T16:49:29Z) - MMIL: A novel algorithm for disease associated cell type discovery [58.044870442206914]
単一細胞データセットは、しばしば個々の細胞ラベルを欠いているため、病気に関連する細胞を特定することは困難である。
セルレベルの分類器の訓練と校正を可能にする予測手法であるMixture Modeling for Multiple Learning Instance (MMIL)を導入する。
論文 参考訳(メタデータ) (2024-06-12T15:22:56Z) - Survival and grade of the glioma prediction using transfer learning [0.0]
本研究では,トランスファーラーニング技術を用いた新しい手法を提案する。
EfficientNet、ResNet、VGG16、Inceptionなど、事前訓練されたネットワークがテストされた。
実験の結果、生存予測では65%の精度を示し、患者を短期、中長期、長期の生存カテゴリーに分類した。
低次グリオーマ (LGG) と高次グリオーマ (HGG) を正確に区別した。
論文 参考訳(メタデータ) (2024-02-04T09:07:07Z) - Deep learning methods for drug response prediction in cancer:
predominant and emerging trends [50.281853616905416]
がんを研究・治療するための計算予測モデルをエクスプロイトすることは、薬物開発の改善と治療計画のパーソナライズドデザインにおいて大きな可能性を秘めている。
最近の研究の波は、ディープラーニング手法を用いて、薬物治療に対するがん反応を予測するという有望な結果を示している。
このレビューは、この分野の現状をよりよく理解し、主要な課題と将来性のあるソリューションパスを特定します。
論文 参考訳(メタデータ) (2022-11-18T03:26:31Z) - Automated Detection of Acute Lymphoblastic Leukemia Subtypes from
Microscopic Blood Smear Images using Deep Neural Networks [0.0]
毎年30万件の新しい白血病が診断されている。
最も危険で致命的なタイプの白血病は急性リンパ性白血病(all)である。
本研究では,Deep Neural Networks (DNN) を用いた顕微鏡的血液スミアス画像から様々な形状のオールブラスト細胞を自動検出するシステムを提案する。
論文 参考訳(メタデータ) (2022-07-30T20:31:59Z) - Continual Learning with Bayesian Model based on a Fixed Pre-trained
Feature Extractor [55.9023096444383]
現在のディープラーニングモデルは、新しいクラスを学ぶ際に古い知識を破滅的に忘れることによって特徴づけられる。
人間の脳における新しい知識の学習プロセスに着想を得て,連続学習のためのベイズ生成モデルを提案する。
論文 参考訳(メタデータ) (2022-04-28T08:41:51Z) - LifeLonger: A Benchmark for Continual Disease Classification [59.13735398630546]
MedMNISTコレクションの連続的な疾患分類のためのベンチマークであるLifeLongerを紹介する。
タスクとクラスでの病気の漸進的な学習は、モデルをスクラッチから再トレーニングすることなく、新しいサンプルを分類する問題に対処する。
クロスドメインインクリメンタル学習は、これまで得られた知識を維持しながら、異なる機関から派生したデータセットを扱う問題に対処する。
論文 参考訳(メタデータ) (2022-04-12T12:25:05Z) - Relational Subsets Knowledge Distillation for Long-tailed Retinal
Diseases Recognition [65.77962788209103]
本研究では,長尾データを知識に基づいて複数のクラスサブセットに分割し,クラスサブセット学習を提案する。
モデルがサブセット固有の知識の学習に集中するように強制する。
提案手法は長期網膜疾患認識タスクに有効であることが判明した。
論文 参考訳(メタデータ) (2021-04-22T13:39:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。