Wave packet dynamics in parabolic optical lattices: From Bloch oscillations to long-range dynamical tunneling
- URL: http://arxiv.org/abs/2410.10727v1
- Date: Mon, 14 Oct 2024 17:08:05 GMT
- Title: Wave packet dynamics in parabolic optical lattices: From Bloch oscillations to long-range dynamical tunneling
- Authors: Usman Ali, Martin Holthaus, Torsten Meier,
- Abstract summary: We show that quantum states can exhibit mixed dynamics by straddling the separatrix.
A slight energy mismatch between nearly-degenerate states results in controlled long-range dynamical tunneling.
- Score: 0.8648069350164062
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We investigate the dynamics of wave packets in a parabolic optical lattice formed by combining an optical lattice with a global parabolic trap. Our study examines the phase space representation of the systems eigenstates by comparing them to the classical phase space of a pendulum, to which the system effectively maps. The analysis reveals that quantum states can exhibit mixed dynamics by straddling the separatrix. A key finding is that the dynamics around the separatrix enables the controlled creation of highly non-classical states, distinguishing them from the classical oscillatory or rotational dynamics of the pendulum. By considering a finite momentum of the initial wave packet, we demonstrate various dynamical regimes. Furthermore, a slight energy mismatch between nearly-degenerate states results in controlled long-range dynamical tunneling. These results can be interpreted as quantum beating between a clockwise rotating and a counterclockwise rotating pendulum.
Related papers
- Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Transient dynamical phase diagram of the spin-boson model [0.0]
We investigate the real-time dynamics of the sub-Ohmic spin-boson model across a broad range of coupling strengths.
We extract signatures of the zero-temperature quantum phase transition between localized and delocalized states.
We identify and quantitatively analyze two competing mechanisms for the crossover between coherent oscillations and incoherent decay.
arXiv Detail & Related papers (2024-02-28T18:52:23Z) - Chirped Bloch-Harmonic oscillations in a parametrically forced optical
lattice [3.222802562733787]
Acceleration for wavepacket propagation in periodic potentials disentangles the kspace dynamics and real-space dynamics.
We analyze the dynamics of a model system in which the k-space dynamics and the real-space dynamics are in intertwined due to a position-dependent force.
arXiv Detail & Related papers (2023-06-15T16:43:42Z) - Bloch Oscillations, Landau-Zener Transition, and Topological Phase
Evolution in a Pendula Array [0.0]
We study the dynamics of a one-dimensional array of pendula with a mild spatial gradient in their self-frequency.
We map their dynamics to the topological Su-Schrieffer-Heeger model of charged quantum particles on a lattice with alternating hopping rates in an external electric field.
arXiv Detail & Related papers (2023-05-30T20:01:52Z) - Harmonic oscillator kicked by spin measurements: a Floquet-like system
without classical analogous [62.997667081978825]
The impulsive driving is provided by stroboscopic measurements on an ancillary degree of freedom.
The dynamics of this system is determined in closed analytical form.
We observe regimes with crystalline and quasicrystalline structures in phase space, resonances, and evidences of chaotic behavior.
arXiv Detail & Related papers (2021-11-23T20:25:57Z) - Rotating Majorana Zero Modes in a disk geometry [75.34254292381189]
We study the manipulation of Majorana zero modes in a thin disk made from a $p$-wave superconductor.
We analyze the second-order topological corner modes that arise when an in-plane magnetic field is applied.
We show that oscillations persist even in the adiabatic phase because of a frequency independent coupling between zero modes and excited states.
arXiv Detail & Related papers (2021-09-08T11:18:50Z) - Localized vibrational modes in waveguide quantum optomechanics with
spontaneously broken PT symmetry [117.44028458220427]
We study theoretically two vibrating quantum emitters trapped near a one-dimensional waveguide and interacting with propagating photons.
In the regime of strong optomechanical interaction the light-induced coupling of emitter vibrations can lead to formation of spatially localized vibration modes, exhibiting parity-time symmetry breaking.
arXiv Detail & Related papers (2021-06-29T12:45:44Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
We propose applying time-dependent photo-emission spectroscopy, an established tool in solid state systems, in cold atom quantum simulators.
We show in exact diagonalization simulations of the one-dimensional $t-J$ model that the spinons start to populate previously unoccupied states in an effective band structure.
The dependence of the spectral function on the time after the pump pulse reveals collective interactions among spinons.
arXiv Detail & Related papers (2021-05-27T18:00:02Z) - Bloch-like super-oscillations and unidirectional motion of phase driven
quantum walkers [0.0]
We study the dynamics of a quantum walker simultaneously subjected to time-independent and -dependent phases.
We show that the average drift velocity can be well described within a continuous-time analogous model.
arXiv Detail & Related papers (2020-08-15T12:19:05Z) - Topological swing in Bloch oscillations [0.0]
We report new oscillations of wavepackets in quantum walks subjected to electric fields.
The number of turning points within one Bloch period of these oscillations is found to be governed by the winding of the quasienergy spectrum.
arXiv Detail & Related papers (2020-04-29T15:16:14Z) - Zitterbewegung and Klein-tunneling phenomena for transient quantum waves [77.34726150561087]
We show that the Zitterbewegung effect manifests itself as a series of quantum beats of the particle density in the long-time limit.
We also find a time-domain where the particle density of the point source is governed by the propagation of a main wavefront.
The relative positions of these wavefronts are used to investigate the time-delay of quantum waves in the Klein-tunneling regime.
arXiv Detail & Related papers (2020-03-09T21:27:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.