論文の概要: Embedding Self-Correction as an Inherent Ability in Large Language Models for Enhanced Mathematical Reasoning
- arxiv url: http://arxiv.org/abs/2410.10735v1
- Date: Mon, 14 Oct 2024 17:16:44 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-29 19:55:21.231410
- Title: Embedding Self-Correction as an Inherent Ability in Large Language Models for Enhanced Mathematical Reasoning
- Title(参考訳): 拡張数学的推論のための大規模言語モデルにおける因果的能力としての自己補正の埋め込み
- Authors: Kuofeng Gao, Huanqia Cai, Qingyao Shuai, Dihong Gong, Zhifeng Li,
- Abstract要約: 自己補正の連鎖は大規模言語モデル(LLM)に固有の能力として自己補正を組み込む
CoSCは、一連の自己補正段階を通して動作する。各段階において、LLMは、与えられた問題に対処するプログラムを生成し、プログラムベースのツールを使用してこのプログラムを実行し、出力を取得し、その後、その出力を検証する。
第1段階では、LCMは、GPT-4から生成される比較的少量のシードデータで訓練され、初期CoSC能力が確立される。
第2段階では、CoSC能力は、より大きな自己生成データを用いたトレーニングによりさらに強化される。
- 参考スコア(独自算出の注目度): 13.082135438792475
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate mathematical reasoning with Large Language Models (LLMs) is crucial in revolutionizing domains that heavily rely on such reasoning. However, LLMs often encounter difficulties in certain aspects of mathematical reasoning, leading to flawed reasoning and erroneous results. To mitigate these issues, we introduce a novel mechanism, the Chain of Self-Correction (CoSC), specifically designed to embed self-correction as an inherent ability in LLMs, enabling them to validate and rectify their own results. The CoSC mechanism operates through a sequence of self-correction stages. In each stage, the LLMs generate a program to address a given problem, execute this program using program-based tools to obtain an output, subsequently verify this output. Based on the verification, the LLMs either proceed to the next correction stage or finalize the answer. This iterative self-correction process allows the LLMs to refine their reasoning steps and improve the accuracy of their mathematical reasoning. To enable the CoSC mechanism at a low cost, we employ a two-phase finetuning approach. In the first phase, the LLMs are trained with a relatively small volume of seeding data generated from GPT-4, establishing an initial CoSC capability. In the second phase, the CoSC capability is further enhanced by training with a larger volume of self-generated data using the trained model in the first phase, without relying on the paid GPT-4. Our comprehensive experiments demonstrate that CoSC significantly improves performance on traditional mathematical datasets among existing open-source LLMs. Notably, our CoSC-Code-34B model achieved a 53.5% score on MATH, the most challenging mathematical reasoning dataset in the public domain, surpassing the performance of well-established models such as ChatGPT, GPT-4, and even multi-modal LLMs like GPT-4V, Gemini-1.0 Pro, and Gemini-1.0 Ultra.
- Abstract(参考訳): LLM(Large Language Models)による正確な数学的推論は、そのような推論に大きく依存する領域の革命に不可欠である。
しかし、LSMは数学的推論の特定の側面において困難に遭遇し、誤った推論と誤った結果をもたらす。
これらの問題を緩和するために, 自己補正の連鎖 (CoSC) という新しいメカニズムを導入する。
CoSC機構は、一連の自己補正段階を通して機能する。
各段階で、LLMは与えられた問題に対処するプログラムを生成し、プログラムベースのツールを使用してこのプログラムを実行して出力を取得し、その後、その出力を検証する。
検証に基づいて、LSMは次の修正段階に進むか、答えを確定する。
この反復的な自己補正プロセスにより、LSMは推論ステップを洗練し、数学的推論の精度を向上させることができる。
低コストでCoSC機構を実現するために, 2相微調整方式を用いる。
第1段階では、LCMは、GPT-4から生成される比較的少量のシードデータで訓練され、初期CoSC能力が確立される。
第2フェーズでは、有償のGPT-4に頼ることなく、トレーニングされたモデルを用いて、より大量の自己生成データをトレーニングすることで、CoSC能力をさらに強化する。
包括的実験により,CoSC は既存のオープンソース LLM における従来の数学的データセットの性能を大幅に向上することが示された。
特に,我々の CoSC-Code-34B モデルは,ChatGPT や GPT-4,さらには GPT-4V, Gemini-1.0 Pro, Gemini-1.0 Ultra などのマルチモーダル LLM など,確立されたモデルの性能を上回り,公共領域における最も難しい数学的推論データセットである MATH で53.5% のスコアを達成した。
関連論文リスト
- A Little Help Goes a Long Way: Efficient LLM Training by Leveraging Small LMs [74.35290684163718]
大規模言語モデル(LLM)開発における最大の課題は、その面倒な事前トレーニングコストである。
本稿では,小言語モデル(SLM)を活用して,LLMの事前学習効率と品質を改善するための有望なパラダイムについて検討する。
論文 参考訳(メタデータ) (2024-10-24T14:31:52Z) - Light-Weight Fault Tolerant Attention for Large Language Model Training [14.178223242134166]
大規模言語モデル (LLM) は様々な自然言語処理タスクにおいて顕著な性能を示した。
LLMは、特にアテンション機構において故障の影響を受けやすいが、これはトランスフォーマーベースのLLMの重要な構成要素である。
我々は,LLMにおけるアテンション機構に適したアルゴリズムベースフォールトトレランス(ABFT)技術であるATTNCheckerを提案する。
論文 参考訳(メタデータ) (2024-10-15T15:52:45Z) - Towards Self-Improvement of LLMs via MCTS: Leveraging Stepwise Knowledge with Curriculum Preference Learning [70.16816087320585]
モンテカルロ木探索 (MCTS) はLLMの推論能力を高める強力な手法として登場した。
既存の蒸留法はMCTSによって生成された豊富な軌跡情報を利用する。
提案するAlphaLLM-CPLは, LLMがMCTSの挙動蒸留により自己改善できる新しいペアワイズトレーニングフレームワークである。
論文 参考訳(メタデータ) (2024-10-09T03:20:02Z) - Improving LLM Reasoning through Scaling Inference Computation with Collaborative Verification [52.095460362197336]
大規模言語モデル(LLM)は一貫性と正確な推論に苦しむ。
LLMは、主に正しいソリューションに基づいて訓練され、エラーを検出して学習する能力を減らす。
本稿では,CoT(Chain-of-Thought)とPoT(Program-of-Thought)を組み合わせた新しい協調手法を提案する。
論文 参考訳(メタデータ) (2024-10-05T05:21:48Z) - S$^3$c-Math: Spontaneous Step-level Self-correction Makes Large Language Models Better Mathematical Reasoners [23.713779973116733]
自己補正は,大規模言語モデル(LLM)の潜在的な推論能力を刺激する手法である
本稿では,S$3$c-Mathを提案する。
論文 参考訳(メタデータ) (2024-09-03T01:40:21Z) - MindStar: Enhancing Math Reasoning in Pre-trained LLMs at Inference Time [51.5039731721706]
MindStarは、大言語モデルの純粋に推論に基づく探索手法である。
推論タスクを探索問題として定式化し、最適な推論経路を特定するための2つの探索アイデアを提案する。
Llama-2-13BやMistral-7Bのようなオープンソースモデルの推論能力を大幅に向上させ、GPT-3.5やGrok-1に匹敵する性能を実現している。
論文 参考訳(メタデータ) (2024-05-25T15:07:33Z) - AlphaMath Almost Zero: Process Supervision without Process [6.318873143509028]
我々はモンテカルロ木探索(MCTS)を活用することによってプロセスアノテーションの必要性を回避できる革新的なフレームワークAlphaMathを提案する。
このフレームワークは、その数学的推論を自律的に強化する、よく訓練されたLLMの可能性を解き放つことに焦点を当てている。
ドメイン内データセットとドメイン外データセットの両方の実験結果から,GPT-4や人手によるプロセス監視がなくても,AlphaMathフレームワークは従来の最先端手法と同等あるいは優れた結果が得られることが示された。
論文 参考訳(メタデータ) (2024-05-06T15:20:30Z) - TRACE: A Comprehensive Benchmark for Continual Learning in Large
Language Models [52.734140807634624]
調整された大規模言語モデル(LLM)は、タスク解決、指示に従うこと、安全性を確保することにおいて、例外的な能力を示す。
既存の連続学習ベンチマークでは、LLMをリードする上で十分な課題が欠如している。
LLMにおける継続学習を評価するための新しいベンチマークであるTRACEを紹介する。
論文 参考訳(メタデータ) (2023-10-10T16:38:49Z) - LLM-Pruner: On the Structural Pruning of Large Language Models [65.02607075556742]
大規模言語モデル(LLM)は、言語理解と生成において顕著な能力を示している。
タスク非依存であり、元のトレーニングデータセットへの依存を最小限に抑えるという2つの制約の範囲内でLLMの圧縮に取り組む。
LLM-Prunerという名前のこの手法は、非臨界結合構造を選択的に除去する構造プルーニングを採用する。
論文 参考訳(メタデータ) (2023-05-19T12:10:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。