論文の概要: Generalizable Humanoid Manipulation with 3D Diffusion Policies
- arxiv url: http://arxiv.org/abs/2410.10803v2
- Date: Wed, 19 Feb 2025 02:13:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-20 13:56:47.143670
- Title: Generalizable Humanoid Manipulation with 3D Diffusion Policies
- Title(参考訳): 3次元拡散型汎用ヒューマノイドマニピュレーション
- Authors: Yanjie Ze, Zixuan Chen, Wenhao Wang, Tianyi Chen, Xialin He, Ying Yuan, Xue Bin Peng, Jiajun Wu,
- Abstract要約: 我々は、ヒューマノイドロボットによる自律的な操作の問題を解決するために、現実世界のロボットシステムを構築している。
本システムは主に,人型ロボットデータを取得するための全身ロボット遠隔操作システムと,高さ調整可能なカートと3D LiDARセンサを備えた25-DoFヒューマノイドロボットプラットフォームの統合である。
1つのシーンで収集されたデータのみを使用し、オンボードコンピューティングのみで、フルサイズのヒューマノイドロボットが様々な現実世界のシナリオで自律的にスキルを発揮できることが示される。
- 参考スコア(独自算出の注目度): 41.23383596258797
- License:
- Abstract: Humanoid robots capable of autonomous operation in diverse environments have long been a goal for roboticists. However, autonomous manipulation by humanoid robots has largely been restricted to one specific scene, primarily due to the difficulty of acquiring generalizable skills and the expensiveness of in-the-wild humanoid robot data. In this work, we build a real-world robotic system to address this challenging problem. Our system is mainly an integration of 1) a whole-upper-body robotic teleoperation system to acquire human-like robot data, 2) a 25-DoF humanoid robot platform with a height-adjustable cart and a 3D LiDAR sensor, and 3) an improved 3D Diffusion Policy learning algorithm for humanoid robots to learn from noisy human data. We run more than 2000 episodes of policy rollouts on the real robot for rigorous policy evaluation. Empowered by this system, we show that using only data collected in one single scene and with only onboard computing, a full-sized humanoid robot can autonomously perform skills in diverse real-world scenarios. Videos are available at \href{https://humanoid-manipulation.github.io}{humanoid-manipulation.github.io}.
- Abstract(参考訳): 多様な環境で自律的な操作が可能なヒューマノイドロボットは、長年ロボット工学者の目標だった。
しかしながら、人間型ロボットによる自律的な操作は、主に一般化可能なスキルの獲得が困難であり、その高価さが原因で、1つの特定の場面に限られている。
本研究では、この課題に対処する現実世界のロボットシステムを構築する。
私たちのシステムは主に統合されたものです
1)人間のようなロボットデータを取得するための全身ロボット遠隔操作システム
2)高さ調整可能なカートと3次元LiDARセンサを備えた25自由度ヒューマノイドロボットプラットフォーム
3) ノイズの多い人的データから学習するヒューマノイドロボットのための3次元拡散政策学習アルゴリズムの改良。
我々は、厳格なポリシー評価のために、実際のロボット上で2000回以上のポリシーロールアウトを実行します。
このシステムを利用して、単一のシーンで収集されたデータのみを用いて、実世界のさまざまなシナリオにおいて、フルサイズのヒューマノイドロボットが自律的にスキルを発揮できることが示される。
ビデオは \href{https:// Humanoid-manipulation.github.io}{ Humanoid-manipulation.github.io} で公開されている。
関連論文リスト
- Learning from Massive Human Videos for Universal Humanoid Pose Control [46.417054298537195]
本稿では,2000万以上のヒューマノイドロボットの大規模データセットであるHumanoid-Xを紹介する。
我々は、テキスト命令を入力として受け取り、対応する動作を出力してヒューマノイドロボットを制御する、大きなヒューマノイドモデルUH-1を訓練する。
私たちのスケーラブルなトレーニングアプローチは、テキストベースのヒューマノイド制御の優れた一般化につながります。
論文 参考訳(メタデータ) (2024-12-18T18:59:56Z) - HumanPlus: Humanoid Shadowing and Imitation from Humans [82.47551890765202]
ヒューマノイドが人間のデータから動きや自律的なスキルを学ぶためのフルスタックシステムを導入する。
まず、既存の40時間動作データセットを用いて、強化学習によるシミュレーションの低レベルポリシーを訓練する。
次に、自己中心型視覚を用いてスキルポリシーを訓練し、ヒューマノイドが自律的に異なるタスクを完了できるようにする。
論文 参考訳(メタデータ) (2024-06-15T00:41:34Z) - HumanoidBench: Simulated Humanoid Benchmark for Whole-Body Locomotion and Manipulation [50.616995671367704]
そこで本研究では,人型ロボットが器用な手を備えた,高次元シミュレーション型ロボット学習ベンチマークHumanoidBenchを提案する。
その結果,現在最先端の強化学習アルゴリズムがほとんどのタスクに支障をきたすのに対して,階層的学習アプローチはロバストな低レベルポリシーに支えられた場合,優れた性能を達成できることがわかった。
論文 参考訳(メタデータ) (2024-03-15T17:45:44Z) - Giving Robots a Hand: Learning Generalizable Manipulation with
Eye-in-Hand Human Video Demonstrations [66.47064743686953]
眼内カメラは、視覚に基づくロボット操作において、より優れたサンプル効率と一般化を可能にすることを約束している。
一方、人間がタスクを行うビデオは、ロボット遠隔操作の専門知識を欠いているため、収集コストがずっと安い。
本研究では,広範にラベルのない人間ビデオによるロボット模倣データセットを拡張し,眼球運動ポリシーの一般化を大幅に促進する。
論文 参考訳(メタデータ) (2023-07-12T07:04:53Z) - HERD: Continuous Human-to-Robot Evolution for Learning from Human
Demonstration [57.045140028275036]
本研究では,マイクロ進化的強化学習を用いて,操作スキルを人間からロボットに伝達可能であることを示す。
本稿では,ロボットの進化経路とポリシーを協調的に最適化する多次元進化経路探索アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-12-08T15:56:13Z) - Robotic Telekinesis: Learning a Robotic Hand Imitator by Watching Humans
on Youtube [24.530131506065164]
我々は、人間なら誰でもロボットの手と腕を制御できるシステムを構築します。
ロボットは、人間のオペレーターを1台のRGBカメラで観察し、その動作をリアルタイムで模倣する。
我々はこのデータを利用して、人間の手を理解するシステムを訓練し、人間のビデオストリームをスムーズで、素早く、安全に、意味論的に誘導デモに類似したロボットのハンドアーム軌道に再ターゲティングする。
論文 参考訳(メタデータ) (2022-02-21T18:59:59Z) - Know Thyself: Transferable Visuomotor Control Through Robot-Awareness [22.405839096833937]
新しいロボットをスクラッチからトレーニングするためには、通常大量のロボット固有のデータを生成する必要がある。
簡単なロボット「自己認識」を活用する「ロボット認識」ソリューションパラダイムを提案する。
シミュレーションおよび実際のロボットにおけるテーブルトップ操作に関する実験により、これらのプラグインの改善により、ビジュモータコントローラの転送性が劇的に向上することを示した。
論文 参考訳(メタデータ) (2021-07-19T17:56:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。