LVD-2M: A Long-take Video Dataset with Temporally Dense Captions
- URL: http://arxiv.org/abs/2410.10816v1
- Date: Mon, 14 Oct 2024 17:59:56 GMT
- Title: LVD-2M: A Long-take Video Dataset with Temporally Dense Captions
- Authors: Tianwei Xiong, Yuqing Wang, Daquan Zhou, Zhijie Lin, Jiashi Feng, Xihui Liu,
- Abstract summary: We introduce a new pipeline for selecting high-quality long-take videos and generating temporally dense captions.
Specifically, we define a set of metrics to quantitatively assess video quality including scene cuts, dynamic degrees, and semantic-level quality.
We curate the first long-take video dataset, LVD-2M, comprising 2 million long-take videos, each covering more than 10 seconds and annotated with temporally dense captions.
- Score: 68.88624389174026
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The efficacy of video generation models heavily depends on the quality of their training datasets. Most previous video generation models are trained on short video clips, while recently there has been increasing interest in training long video generation models directly on longer videos. However, the lack of such high-quality long videos impedes the advancement of long video generation. To promote research in long video generation, we desire a new dataset with four key features essential for training long video generation models: (1) long videos covering at least 10 seconds, (2) long-take videos without cuts, (3) large motion and diverse contents, and (4) temporally dense captions. To achieve this, we introduce a new pipeline for selecting high-quality long-take videos and generating temporally dense captions. Specifically, we define a set of metrics to quantitatively assess video quality including scene cuts, dynamic degrees, and semantic-level quality, enabling us to filter high-quality long-take videos from a large amount of source videos. Subsequently, we develop a hierarchical video captioning pipeline to annotate long videos with temporally-dense captions. With this pipeline, we curate the first long-take video dataset, LVD-2M, comprising 2 million long-take videos, each covering more than 10 seconds and annotated with temporally dense captions. We further validate the effectiveness of LVD-2M by fine-tuning video generation models to generate long videos with dynamic motions. We believe our work will significantly contribute to future research in long video generation.
Related papers
- MovieBench: A Hierarchical Movie Level Dataset for Long Video Generation [62.85764872989189]
There is no publicly available dataset tailored for the analysis, evaluation, and training of long video generation models.
We present MovieBench: A Hierarchical Movie-Level dataset for Long Video Generation.
The dataset will be public and continuously maintained, aiming to advance the field of long video generation.
arXiv Detail & Related papers (2024-11-22T10:25:08Z) - xGen-VideoSyn-1: High-fidelity Text-to-Video Synthesis with Compressed Representations [120.52120919834988]
xGen-SynVideo-1 is a text-to-video (T2V) generation model capable of producing realistic scenes from textual descriptions.
VidVAE compresses video data both spatially and temporally, significantly reducing the length of visual tokens.
DiT model incorporates spatial and temporal self-attention layers, enabling robust generalization across different timeframes and aspect ratios.
arXiv Detail & Related papers (2024-08-22T17:55:22Z) - Multi-sentence Video Grounding for Long Video Generation [46.363084926441466]
We propose a brave and new idea of Multi-sentence Video Grounding for Long Video Generation.
Our approach seamlessly extends the development in image/video editing, video morphing and personalized generation, and video grounding to the long video generation.
arXiv Detail & Related papers (2024-07-18T07:05:05Z) - StreamingT2V: Consistent, Dynamic, and Extendable Long Video Generation from Text [58.49820807662246]
We introduce StreamingT2V, an autoregressive approach for long video generation of 80, 240, 600, 1200 or more frames with smooth transitions.
Our code will be available at: https://github.com/Picsart-AI-Research/StreamingT2V.
arXiv Detail & Related papers (2024-03-21T18:27:29Z) - LVCHAT: Facilitating Long Video Comprehension [25.395689904747965]
We propose Long Video Chat (LVChat) to enable multimodal large language models (LLMs) to read videos.
LV significantly outperforms existing methods by up to 27% in accuracy on long-video QA datasets and long-video captioning benchmarks.
arXiv Detail & Related papers (2024-02-19T11:59:14Z) - A Video is Worth 10,000 Words: Training and Benchmarking with Diverse
Captions for Better Long Video Retrieval [43.58794386905177]
Existing long video retrieval systems are trained and tested in the paragraph-to-video retrieval regime.
This neglects the richness and variety of possible valid descriptions of a video.
We propose a pipeline that leverages state-of-the-art large language models to carefully generate a diverse set of synthetic captions for long videos.
arXiv Detail & Related papers (2023-11-30T18:59:45Z) - Video Generation Beyond a Single Clip [76.5306434379088]
Video generation models can only generate video clips that are relatively short compared with the length of real videos.
To generate long videos covering diverse content and multiple events, we propose to use additional guidance to control the video generation process.
The proposed approach is complementary to existing efforts on video generation, which focus on generating realistic video within a fixed time window.
arXiv Detail & Related papers (2023-04-15T06:17:30Z) - Long Video Generation with Time-Agnostic VQGAN and Time-Sensitive
Transformer [66.56167074658697]
We present a method that builds on 3D-VQGAN and transformers to generate videos with thousands of frames.
Our evaluation shows that our model trained on 16-frame video clips can generate diverse, coherent, and high-quality long videos.
We also showcase conditional extensions of our approach for generating meaningful long videos by incorporating temporal information with text and audio.
arXiv Detail & Related papers (2022-04-07T17:59:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.