論文の概要: Mitigating Hallucinations Using Ensemble of Knowledge Graph and Vector Store in Large Language Models to Enhance Mental Health Support
- arxiv url: http://arxiv.org/abs/2410.10853v1
- Date: Sun, 06 Oct 2024 14:26:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-20 09:41:08.896708
- Title: Mitigating Hallucinations Using Ensemble of Knowledge Graph and Vector Store in Large Language Models to Enhance Mental Health Support
- Title(参考訳): 大規模言語モデルにおける知識グラフとベクトルストアの組合わせによる幻覚の緩和とメンタルヘルス支援
- Authors: Abdul Muqtadir, Hafiz Syed Muhammad Bilal, Ayesha Yousaf, Hafiz Farooq Ahmed, Jamil Hussain,
- Abstract要約: この研究は、大規模言語モデル(LLM)における幻覚の顕在化を深く研究している。
主な目的は、幻覚の発生を抑える効果的な戦略を明らかにすることである。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: This research work delves into the manifestation of hallucination within Large Language Models (LLMs) and its consequential impacts on applications within the domain of mental health. The primary objective is to discern effective strategies for curtailing hallucinatory occurrences, thereby bolstering the dependability and security of LLMs in facilitating mental health interventions such as therapy, counseling, and the dissemination of pertinent information. Through rigorous investigation and analysis, this study seeks to elucidate the underlying mechanisms precipitating hallucinations in LLMs and subsequently propose targeted interventions to alleviate their occurrence. By addressing this critical issue, the research endeavors to foster a more robust framework for the utilization of LLMs within mental health contexts, ensuring their efficacy and reliability in aiding therapeutic processes and delivering accurate information to individuals seeking mental health support.
- Abstract(参考訳): 本研究は,大規模言語モデル(LLM)における幻覚の顕在化と,それに伴うメンタルヘルス分野の応用への影響について考察する。
主な目的は、幻覚の発生を抑える効果的な戦略を見極め、治療、カウンセリング、関連する情報の拡散といったメンタルヘルス介入を促進する上で、LSMの信頼性と安全性を高めることである。
本研究は、厳密な調査と分析を通じて、LSMの幻覚を誘発するメカニズムを解明し、その発生を緩和するための標的的介入を提案する。
この重要な問題に対処することで、研究はメンタルヘルスの文脈におけるLSMの利用のためのより堅牢な枠組みを育成し、治療プロセスを支援する上での有効性と信頼性を確保し、メンタルヘルスの支援を求める個人に正確な情報を提供する。
関連論文リスト
- Mitigating Hallucinations of Large Language Models in Medical Information Extraction via Contrastive Decoding [92.32881381717594]
医療情報抽出タスクにおける幻覚の問題を解決するために,ALCD(ALternate Contrastive Decoding)を導入する。
ALCDは, 従来の復号法に比べて幻覚の解消に有意な改善が見られた。
論文 参考訳(メタデータ) (2024-10-21T07:19:19Z) - SouLLMate: An Application Enhancing Diverse Mental Health Support with Adaptive LLMs, Prompt Engineering, and RAG Techniques [9.146311285410631]
メンタルヘルスの問題は個人の日常生活に大きな影響を及ぼすが、多くの人は利用可能なオンラインリソースでも必要な支援を受けていない。
この研究は、最先端のAI技術を通じて、多様な、アクセス可能な、スティグマのない、パーソナライズされた、リアルタイムのメンタルヘルスサポートを提供することを目的としている。
論文 参考訳(メタデータ) (2024-10-17T22:04:32Z) - SouLLMate: An Adaptive LLM-Driven System for Advanced Mental Health Support and Assessment, Based on a Systematic Application Survey [9.146311285410631]
メンタルヘルスの問題は個人の日常生活に大きな影響を及ぼすが、多くの人は利用可能なオンラインリソースでも必要な支援を受けていない。
この研究は、最先端のAI技術を通じて、アクセス可能で、スティグマフリーで、パーソナライズされ、リアルタイムなメンタルヘルスサポートを提供することを目的としている。
論文 参考訳(メタデータ) (2024-10-06T17:11:29Z) - LLM Internal States Reveal Hallucination Risk Faced With a Query [62.29558761326031]
人間は、クエリに直面したとき、私たちが知らないことを認識できる自己認識プロセスを持っています。
本稿では,大規模言語モデルが応答生成に先立って,自身の幻覚リスクを推定できるかどうかを検討する。
確率推定器により, LLM自己評価を利用して, 平均幻覚推定精度84.32%を達成する。
論文 参考訳(メタデータ) (2024-07-03T17:08:52Z) - Large Language Model for Mental Health: A Systematic Review [2.9429776664692526]
大規模言語モデル(LLM)は、デジタルヘルスの潜在的な応用に対して大きな注目を集めている。
この体系的なレビューは、早期スクリーニング、デジタル介入、臨床応用におけるその強みと限界に焦点を当てている。
論文 参考訳(メタデータ) (2024-02-19T17:58:41Z) - Retrieve Only When It Needs: Adaptive Retrieval Augmentation for Hallucination Mitigation in Large Language Models [68.91592125175787]
幻覚は、大規模言語モデル(LLM)の実践的実装において重要な課題となる。
本稿では,幻覚に対処するための選択的検索拡張プロセスにより,Lowenを改良する新しいアプローチを提案する。
論文 参考訳(メタデータ) (2024-02-16T11:55:40Z) - Challenges of Large Language Models for Mental Health Counseling [4.604003661048267]
世界のメンタルヘルス危機は、精神疾患の急速な増加、限られた資源、治療を求める社会的便宜によって悪化している。
メンタルヘルス領域における大規模言語モデル(LLM)の適用は、提供された情報の正確性、有効性、信頼性に関する懸念を提起する。
本稿では, モデル幻覚, 解釈可能性, バイアス, プライバシ, 臨床効果など, 心理カウンセリングのためのLSMの開発に伴う課題について検討する。
論文 参考訳(メタデータ) (2023-11-23T08:56:41Z) - Evaluating the Efficacy of Interactive Language Therapy Based on LLM for
High-Functioning Autistic Adolescent Psychological Counseling [1.1780706927049207]
本研究では,高機能自閉症青年に対する対話型言語治療におけるLarge Language Models(LLMs)の有効性について検討した。
LLMは、従来の心理学的カウンセリング手法を強化する新しい機会を提供する。
論文 参考訳(メタデータ) (2023-11-12T07:55:39Z) - Towards Mitigating Hallucination in Large Language Models via
Self-Reflection [63.2543947174318]
大規模言語モデル(LLM)は、質問応答(QA)タスクを含む生成的および知識集約的なタスクを約束している。
本稿では,広範に採用されているLCMとデータセットを用いた医療再生QAシステムにおける幻覚現象を解析する。
論文 参考訳(メタデータ) (2023-10-10T03:05:44Z) - Siren's Song in the AI Ocean: A Survey on Hallucination in Large
Language Models [116.01843550398183]
大規模言語モデル(LLM)は、様々な下流タスクで顕著な機能を示している。
LLMは時折、ユーザ入力から分岐するコンテンツを生成し、以前生成されたコンテキストと矛盾する。
論文 参考訳(メタデータ) (2023-09-03T16:56:48Z) - Self-Verification Improves Few-Shot Clinical Information Extraction [73.6905567014859]
大規模言語モデル (LLMs) は、数発のテキスト内学習を通じて臨床キュレーションを加速する可能性を示している。
正確性や解釈可能性に関する問題、特に健康のようなミッションクリティカルな領域ではまだ苦戦している。
本稿では,自己検証を用いた汎用的な緩和フレームワークについて検討する。このフレームワークはLLMを利用して,自己抽出のための証明を提供し,その出力をチェックする。
論文 参考訳(メタデータ) (2023-05-30T22:05:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。