論文の概要: Mirror-Consistency: Harnessing Inconsistency in Majority Voting
- arxiv url: http://arxiv.org/abs/2410.10857v1
- Date: Mon, 07 Oct 2024 03:41:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-20 09:11:09.697755
- Title: Mirror-Consistency: Harnessing Inconsistency in Majority Voting
- Title(参考訳): ミラー一貫性: 多数決投票における一貫性の低下
- Authors: Siyuan Huang, Zhiyuan Ma, Jintao Du, Changhua Meng, Weiqiang Wang, Zhouhan Lin,
- Abstract要約: 本稿では,標準的な自己整合性アプローチの強化であるミラー・一貫性について述べる。
Mirror-Consistencyは「反射鏡」を自己組織化復号プロセスに組み込む。
ミラー一貫性は自己整合性と比較して,推理精度と信頼性校正の両面において優れた性能を示すことを示す。
- 参考スコア(独自算出の注目度): 54.30719306011487
- License:
- Abstract: Self-Consistency, a widely-used decoding strategy, significantly boosts the reasoning capabilities of Large Language Models (LLMs). However, it depends on the plurality voting rule, which focuses on the most frequent answer while overlooking all other minority responses. These inconsistent minority views often illuminate areas of uncertainty within the model's generation process. To address this limitation, we present Mirror-Consistency, an enhancement of the standard Self-Consistency approach. Our method incorporates a 'reflective mirror' into the self-ensemble decoding process and enables LLMs to critically examine inconsistencies among multiple generations. Additionally, just as humans use the mirror to better understand themselves, we propose using Mirror-Consistency to enhance the sample-based confidence calibration methods, which helps to mitigate issues of overconfidence. Our experimental results demonstrate that Mirror-Consistency yields superior performance in both reasoning accuracy and confidence calibration compared to Self-Consistency.
- Abstract(参考訳): 広く使われているデコード戦略であるSelf-Consistencyは、Large Language Models(LLM)の推論能力を大幅に向上させる。
しかし、それは複数の投票規則に依存しており、これは他のすべての少数派の反応を見下ろしながら、最も頻繁な回答に焦点を当てている。
これらの矛盾したマイノリティの見解は、しばしばモデルの生成プロセス内で不確実な領域を照らす。
この制限に対処するため、標準的な自己整合性アプローチの強化であるミラー・一貫性を提示する。
提案手法では, 「反射鏡」 を自己アンサンブル復号処理に組み込んで, 複数世代間の不整合を批判的に検証する。
さらに、人間が鏡を使って自分自身をよりよく理解するのと同じように、ミラー・コンシステンシーを用いて、標本ベースの信頼度校正方法を強化することで、過信の問題を軽減することを提案する。
実験結果から,ミラー一貫性は自己整合性と比較して,推理精度と信頼性校正の両面で優れた性能を示すことが示された。
関連論文リスト
- Graph-based Confidence Calibration for Large Language Models [22.394717844099684]
本稿では,信頼度推定モデルを構築するための新しい手法を提案する。
重み付きグラフを用いて、質問に対する大きな言語モデルの応答の一貫性を表現します。
次に、正しい応答の確率を推定するためにグラフニューラルネットワークを訓練する。
論文 参考訳(メタデータ) (2024-11-03T20:36:44Z) - Decompose and Compare Consistency: Measuring VLMs' Answer Reliability via Task-Decomposition Consistency Comparison [22.438863942925973]
信頼性測定のための分解・比較一貫性(DeCC)を提案する。
VLMの内部推論プロセスを用いて生成した直接解の一貫性を比較することにより、DeCCはVLMの直接解の信頼性を測定する。
論文 参考訳(メタデータ) (2024-07-10T17:00:29Z) - Dynamic Correlation Learning and Regularization for Multi-Label Confidence Calibration [60.95748658638956]
本稿では,多ラベルシナリオにおける信頼度を適切に評価することを目的としたマルチラベル信頼性タスクを提案する。
既存のシングルラベルキャリブレーション手法では、セマンティックな混乱に対処するために欠かせないカテゴリ相関を考慮できない。
本稿では,多粒度セマンティック相関を利用した動的相関学習と正規化アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-07-09T13:26:21Z) - Cycles of Thought: Measuring LLM Confidence through Stable Explanations [53.15438489398938]
大規模言語モデル(LLM)は、様々なベンチマークで人間レベルの精度に到達し、さらに超えることができるが、不正確な応答における過度な自信は、依然として十分に文書化された障害モードである。
本稿では,LLMの不確実性を測定するためのフレームワークを提案する。
論文 参考訳(メタデータ) (2024-06-05T16:35:30Z) - SaySelf: Teaching LLMs to Express Confidence with Self-Reflective Rationales [29.33581578047835]
SaySelfは、大規模言語モデルに、より正確なきめ細かな信頼推定を表現するためのトレーニングフレームワークである。
さらに、SaySelf は LLM に対して、パラメトリック知識のギャップを明確に識別する自己反射的合理性を生成するよう指示する。
生成した自己反射的理性は合理的であり、キャリブレーションにさらに貢献できることを示す。
論文 参考訳(メタデータ) (2024-05-31T16:21:16Z) - Confidence Calibration and Rationalization for LLMs via Multi-Agent Deliberation [18.815226646364476]
大規模言語モデル(LLM)の既存のキャリブレーション手法は、「集団知恵」を最大限に活用することなく、個人の信頼度を推定または引き出すことに重点を置いている。
我々は,複数ツール強化LDMエージェントの協調的・表現的能力を活用した,ポストホックトレーニングフリーキャリブレーション戦略であるCollaborativeを提案する。
論文 参考訳(メタデータ) (2024-04-14T02:40:43Z) - Think Twice Before Trusting: Self-Detection for Large Language Models through Comprehensive Answer Reflection [90.71323430635593]
本稿では, LLM生成解を超える包括的解答空間を考察した, 新たな自己検出パラダイムを提案する。
このパラダイムに基づいて、2段階のフレームワークを導入し、まずまずLLMに各候補の回答を反映し、正当化するように指示する。
このフレームワークは、優れた自己検出のための既存のアプローチとシームレスに統合できる。
論文 参考訳(メタデータ) (2024-03-15T02:38:26Z) - Self-Contrast: Better Reflection Through Inconsistent Solving Perspectives [45.87069217634753]
研究によると、外部からのフィードバックがなければ、Large Language Modelの本質的なリフレクションは不安定である。
我々の調査によると、重要なボトルネックは自己評価されたフィードバックの品質である。
要求に合わせて様々な解決の観点を適応的に探求し、相違点を対比し、これらの相違点を再検討し、相違点を排除するために使用できるチェックリストにまとめます。
論文 参考訳(メタデータ) (2024-01-04T00:32:33Z) - Can LLMs Express Their Uncertainty? An Empirical Evaluation of Confidence Elicitation in LLMs [60.61002524947733]
従来の信頼性推論手法は、内部モデル情報やモデル微調整へのホワイトボックスアクセスに依存していた。
これにより、不確実性推定のためのブラックボックスアプローチの未解決領域を探索する必要性が高まっている。
言語的信頼を導き出すための戦略の推進、複数の応答を生成するためのサンプリング方法、一貫性を計算するための集約手法の3つの要素からなる体系的フレームワークを定義する。
論文 参考訳(メタデータ) (2023-06-22T17:31:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。