Improving Data Efficiency via Curating LLM-Driven Rating Systems
- URL: http://arxiv.org/abs/2410.10877v1
- Date: Wed, 09 Oct 2024 10:07:55 GMT
- Title: Improving Data Efficiency via Curating LLM-Driven Rating Systems
- Authors: Jinlong Pang, Jiaheng Wei, Ankit Parag Shah, Zhaowei Zhu, Yaxuan Wang, Chen Qian, Yang Liu, Yujia Bao, Wei Wei,
- Abstract summary: We introduce DS2, a Diversity-aware Score curation method for Data Selection.
By systematically modeling error patterns through a score transition matrix, DS2 corrects LLM-based scores and promotes diversity in the selected data samples.
Our approach shows that a curated subset (just 3.3% of the original dataset) outperforms full-scale datasets (300k samples) across various machine-alignment benchmarks.
- Score: 30.233724785974143
- License:
- Abstract: Instruction tuning is critical for adapting large language models (LLMs) to downstream tasks, and recent studies have demonstrated that small amounts of human-curated data can outperform larger datasets, challenging traditional data scaling laws. While LLM-based data quality rating systems offer a cost-effective alternative to human annotation, they often suffer from inaccuracies and biases, even in powerful models like GPT-4. In this work, we introduce DS2, a Diversity-aware Score curation method for Data Selection. By systematically modeling error patterns through a score transition matrix, DS2 corrects LLM-based scores and promotes diversity in the selected data samples. Our approach shows that a curated subset (just 3.3% of the original dataset) outperforms full-scale datasets (300k samples) across various machine-alignment benchmarks, and matches or surpasses human-aligned datasets such as LIMA with the same sample size (1k samples). These findings challenge conventional data scaling assumptions, highlighting that redundant, low-quality samples can degrade performance and reaffirming that "more can be less."
Related papers
- Star-Agents: Automatic Data Optimization with LLM Agents for Instruction Tuning [71.2981957820888]
We propose a novel Star-Agents framework, which automates the enhancement of data quality across datasets.
The framework initially generates diverse instruction data with multiple LLM agents through a bespoke sampling method.
The generated data undergo a rigorous evaluation using a dual-model method that assesses both difficulty and quality.
arXiv Detail & Related papers (2024-11-21T02:30:53Z) - Efficient Alignment of Large Language Models via Data Sampling [0.4915744683251149]
We propose an information theory-based methodology for efficient alignment by identifying a small high quality subset.
We find that the model aligned using our proposed methodology outperforms other sampling methods and performs comparable to the model aligned with the full dataset.
arXiv Detail & Related papers (2024-11-15T19:36:15Z) - Forewarned is Forearmed: Leveraging LLMs for Data Synthesis through Failure-Inducing Exploration [90.41908331897639]
Large language models (LLMs) have significantly benefited from training on diverse, high-quality task-specific data.
We present a novel approach, ReverseGen, designed to automatically generate effective training samples.
arXiv Detail & Related papers (2024-10-22T06:43:28Z) - On the Diversity of Synthetic Data and its Impact on Training Large Language Models [34.00031258223175]
Large Language Models (LLMs) have accentuated the need for diverse, high-quality pre-training data.
Synthetic data emerges as a viable solution to the challenges of data scarcity and inaccessibility.
We study the downstream effects of synthetic data diversity during both the pre-training and fine-tuning stages.
arXiv Detail & Related papers (2024-10-19T22:14:07Z) - A CLIP-Powered Framework for Robust and Generalizable Data Selection [51.46695086779598]
Real-world datasets often contain redundant and noisy data, imposing a negative impact on training efficiency and model performance.
Data selection has shown promise in identifying the most representative samples from the entire dataset.
We propose a novel CLIP-powered data selection framework that leverages multimodal information for more robust and generalizable sample selection.
arXiv Detail & Related papers (2024-10-15T03:00:58Z) - A Framework for Fine-Tuning LLMs using Heterogeneous Feedback [69.51729152929413]
We present a framework for fine-tuning large language models (LLMs) using heterogeneous feedback.
First, we combine the heterogeneous feedback data into a single supervision format, compatible with methods like SFT and RLHF.
Next, given this unified feedback dataset, we extract a high-quality and diverse subset to obtain performance increases.
arXiv Detail & Related papers (2024-08-05T23:20:32Z) - Entropy Law: The Story Behind Data Compression and LLM Performance [115.70395740286422]
We find that model performance is negatively correlated to the compression ratio of training data, which usually yields a lower training loss.
Based on the findings of the entropy law, we propose a quite efficient and universal data selection method.
We also present an interesting application of entropy law that can detect potential performance risks at the beginning of model training.
arXiv Detail & Related papers (2024-07-09T08:14:29Z) - SHED: Shapley-Based Automated Dataset Refinement for Instruction Fine-Tuning [16.307467144690683]
Large Language Models can achieve desirable performance with only a small amount of high-quality data.
Identifying high-quality data from vast datasets to curate small yet effective datasets has emerged as a critical challenge.
We introduce SHED, an automated dataset refinement framework based on Shapley value for instruction fine-tuning.
arXiv Detail & Related papers (2024-04-23T04:56:48Z) - How to Train Data-Efficient LLMs [56.41105687693619]
We study data-efficient approaches for pre-training language models (LLMs)
We find that Ask-LLM and Density sampling are the best methods in their respective categories.
In our comparison of 19 samplers, involving hundreds of evaluation tasks and pre-training runs, we find that Ask-LLM and Density are the best methods in their respective categories.
arXiv Detail & Related papers (2024-02-15T02:27:57Z) - Self-Evolved Diverse Data Sampling for Efficient Instruction Tuning [47.02160072880698]
We introduce a self-evolving mechanism that allows the model itself to actively sample subsets that are equally or even more effective.
The key to our data sampling technique lies in the enhancement of diversity in the chosen subsets.
Extensive experiments across three datasets and benchmarks demonstrate the effectiveness of DiverseEvol.
arXiv Detail & Related papers (2023-11-14T14:10:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.