D3: Diversity, Difficulty, and Dependability-Aware Data Selection for Sample-Efficient LLM Instruction Tuning
- URL: http://arxiv.org/abs/2503.11441v1
- Date: Fri, 14 Mar 2025 14:28:19 GMT
- Title: D3: Diversity, Difficulty, and Dependability-Aware Data Selection for Sample-Efficient LLM Instruction Tuning
- Authors: Jia Zhang, Chen-Xi Zhang, Yao Liu, Yi-Xuan Jin, Xiao-Wen Yang, Bo Zheng, Yi Liu, Lan-Zhe Guo,
- Abstract summary: Small, high-quality datasets can equip large language models with instruction-following capabilities.<n>We propose the D3 method comprising two key steps of scoring and selection.<n>Experiments on three datasets demonstrate the effectiveness of D3 in endowing LLMs with competitive or even superior instruction-following capabilities.
- Score: 29.019199700339083
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advancements in instruction tuning for large language models (LLMs) suggest that a small, high-quality dataset can significantly equip LLMs with instruction-following capabilities, outperforming large datasets often burdened by quality and redundancy issues. However, the challenge lies in automatically identifying valuable subsets from large datasets to boost both the effectiveness and efficiency of instruction tuning. In this paper, we first establish data selection criteria based on three distinct aspects of data value: diversity, difficulty, and dependability, and then propose the D3 method comprising two key steps of scoring and selection. Specifically, in the scoring step, we define the diversity function to measure sample distinctiveness and introduce the uncertainty-based prediction difficulty to evaluate sample difficulty by mitigating the interference of context-oriented generation diversity. Additionally, we integrate an external LLM for dependability assessment. In the selection step, we formulate the D3 weighted coreset objective, which jointly optimizes three aspects of data value to solve for the most valuable subset. The two steps of D3 can iterate multiple rounds, incorporating feedback to refine the selection focus adaptively. Experiments on three datasets demonstrate the effectiveness of D3 in endowing LLMs with competitive or even superior instruction-following capabilities using less than 10% of the entire dataset.
Related papers
- TSceneJAL: Joint Active Learning of Traffic Scenes for 3D Object Detection [26.059907173437114]
TSceneJAL framework can efficiently sample the balanced, diverse, and complex traffic scenes from both labeled and unlabeled data.
Our approach outperforms existing state-of-the-art methods on 3D object detection tasks with up to 12% improvements.
arXiv Detail & Related papers (2024-12-25T11:07:04Z) - Star-Agents: Automatic Data Optimization with LLM Agents for Instruction Tuning [71.2981957820888]
We propose a novel Star-Agents framework, which automates the enhancement of data quality across datasets.
The framework initially generates diverse instruction data with multiple LLM agents through a bespoke sampling method.
The generated data undergo a rigorous evaluation using a dual-model method that assesses both difficulty and quality.
arXiv Detail & Related papers (2024-11-21T02:30:53Z) - 3DS: Decomposed Difficulty Data Selection's Case Study on LLM Medical Domain Adaptation [13.058299222554295]
Large Language Models excel in general tasks but struggle in specialized domains like healthcare.
We propose a two-stage model-centric data selection framework, De Difficulty Data Selection (3DS)
Our experiments on real-world healthcare datasets demonstrate the superiority of 3DS over exisiting methods in accuracy by over 5.29%.
arXiv Detail & Related papers (2024-10-13T02:29:00Z) - Improving Data Efficiency via Curating LLM-Driven Rating Systems [30.233724785974143]
We introduce DS2, a Diversity-aware Score curation method for Data Selection.<n>By systematically modeling error patterns through a score transition matrix, DS2 corrects LLM-based scores and promotes diversity in the selected data samples.<n>Our approach shows that a curated subset (just 3.3% of the original dataset) outperforms full-scale datasets (300k samples) across various machine-alignment benchmarks.
arXiv Detail & Related papers (2024-10-09T10:07:55Z) - TAGCOS: Task-agnostic Gradient Clustered Coreset Selection for Instruction Tuning Data [29.45013725650798]
It is essential to extract a subset of instruction datasets that achieves comparable performance to the full dataset.
We propose Task-Agnostic Gradient Clustered COreset Selection (TAGCOS)
Specifically, we leverage sample gradients as the data representations, perform clustering to group similar data, and apply an efficient greedy algorithm for coreset selection.
arXiv Detail & Related papers (2024-07-21T17:59:20Z) - Your Vision-Language Model Itself Is a Strong Filter: Towards
High-Quality Instruction Tuning with Data Selection [59.11430077029321]
We introduce a novel dataset selection method, Self-Filter, for vision-language models (VLMs)
In the first stage, we devise a scoring network to evaluate the difficulty of training instructions, which is co-trained with the VLM.
In the second stage, we use the trained score net to measure the difficulty of each instruction, select the most challenging samples, and penalize similar samples to encourage diversity.
arXiv Detail & Related papers (2024-02-19T20:08:48Z) - LESS: Selecting Influential Data for Targeted Instruction Tuning [64.78894228923619]
We propose LESS, an efficient algorithm to estimate data influences and perform Low-rank gradiEnt Similarity Search for instruction data selection.
We show that training on a LESS-selected 5% of the data can often outperform training on the full dataset across diverse downstream tasks.
Our method goes beyond surface form cues to identify data that the necessary reasoning skills for the intended downstream application.
arXiv Detail & Related papers (2024-02-06T19:18:04Z) - Self-Evolved Diverse Data Sampling for Efficient Instruction Tuning [47.02160072880698]
We introduce a self-evolving mechanism that allows the model itself to actively sample subsets that are equally or even more effective.
The key to our data sampling technique lies in the enhancement of diversity in the chosen subsets.
Extensive experiments across three datasets and benchmarks demonstrate the effectiveness of DiverseEvol.
arXiv Detail & Related papers (2023-11-14T14:10:40Z) - D2 Pruning: Message Passing for Balancing Diversity and Difficulty in
Data Pruning [70.98091101459421]
Coreset selection seeks to select a subset of the training data so as to maximize the performance of models trained on this subset, also referred to as coreset.
We propose a novel pruning algorithm, D2 Pruning, that uses forward and reverse message passing over this dataset graph for coreset selection.
Results show that D2 Pruning improves coreset selection over previous state-of-the-art methods for up to 70% pruning rates.
arXiv Detail & Related papers (2023-10-11T23:01:29Z) - Open-Set Semi-Supervised Learning for 3D Point Cloud Understanding [62.17020485045456]
It is commonly assumed in semi-supervised learning (SSL) that the unlabeled data are drawn from the same distribution as that of the labeled ones.
We propose to selectively utilize unlabeled data through sample weighting, so that only conducive unlabeled data would be prioritized.
arXiv Detail & Related papers (2022-05-02T16:09:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.