EPi-cKANs: Elasto-Plasticity Informed Kolmogorov-Arnold Networks Using Chebyshev Polynomials
- URL: http://arxiv.org/abs/2410.10897v1
- Date: Sat, 12 Oct 2024 16:01:38 GMT
- Title: EPi-cKANs: Elasto-Plasticity Informed Kolmogorov-Arnold Networks Using Chebyshev Polynomials
- Authors: Farinaz Mostajeran, Salah A Faroughi,
- Abstract summary: We present an elasto-plasticity informed Chebyshev-based network (EPi-cKAN)
EPi-cKAN provides superior accuracy in predicting stress components and demonstrates better accuracy when used to predict sand elasto-plastic behavior under blind triaxial axisymmetric strain-controlled loading paths.
- Score: 0.0
- License:
- Abstract: Multilayer perceptron (MLP) networks are predominantly used to develop data-driven constitutive models for granular materials. They offer a compelling alternative to traditional physics-based constitutive models in predicting nonlinear responses of these materials, e.g., elasto-plasticity, under various loading conditions. To attain the necessary accuracy, MLPs often need to be sufficiently deep or wide, owing to the curse of dimensionality inherent in these problems. To overcome this limitation, we present an elasto-plasticity informed Chebyshev-based Kolmogorov-Arnold network (EPi-cKAN) in this study. This architecture leverages the benefits of KANs and augmented Chebyshev polynomials, as well as integrates physical principles within both the network structure and the loss function. The primary objective of EPi-cKAN is to provide an accurate and generalizable function approximation for non-linear stress-strain relationships, using fewer parameters compared to standard MLPs. To evaluate the efficiency, accuracy, and generalization capabilities of EPi-cKAN in modeling complex elasto-plastic behavior, we initially compare its performance with other cKAN-based models, which include purely data-driven parallel and serial architectures. Furthermore, to differentiate EPi-cKAN's distinct performance, we also compare it against purely data-driven and physics-informed MLP-based methods. Lastly, we test EPi-cKAN's ability to predict blind strain-controlled paths that extend beyond the training data distribution to gauge its generalization and predictive capabilities. Our findings indicate that, even with limited data and fewer parameters compared to other approaches, EPi-cKAN provides superior accuracy in predicting stress components and demonstrates better generalization when used to predict sand elasto-plastic behavior under blind triaxial axisymmetric strain-controlled loading paths.
Related papers
- SPIN: SE(3)-Invariant Physics Informed Network for Binding Affinity Prediction [3.406882192023597]
Accurate prediction of protein-ligand binding affinity is crucial for drug development.
Traditional methods often fail to accurately model the complex's spatial information.
We propose SPIN, a model that incorporates various inductive biases applicable to this task.
arXiv Detail & Related papers (2024-07-10T08:40:07Z) - Hybrid data-driven and physics-informed regularized learning of cyclic
plasticity with Neural Networks [0.0]
The proposed model architecture is simpler and more efficient compared to existing solutions from the literature.
The validation of the approach is carried out by means of surrogate data obtained with the Armstrong-Frederick kinematic hardening model.
arXiv Detail & Related papers (2024-03-04T07:09:54Z) - Beyond mirkwood: Enhancing SED Modeling with Conformal Predictions [0.0]
We propose an advanced machine learning-based approach that enhances flexibility and uncertainty in SED fitting.
We incorporate conformalized quantile regression to convert point predictions into error bars, enhancing interpretability and reliability.
arXiv Detail & Related papers (2023-12-21T11:27:20Z) - A PAC-Bayesian Perspective on the Interpolating Information Criterion [54.548058449535155]
We show how a PAC-Bayes bound is obtained for a general class of models, characterizing factors which influence performance in the interpolating regime.
We quantify how the test error for overparameterized models achieving effectively zero training error depends on the quality of the implicit regularization imposed by e.g. the combination of model, parameter-initialization scheme.
arXiv Detail & Related papers (2023-11-13T01:48:08Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
We propose a framework that combines Symbolic Regression (SR) and Discrete Exterior Calculus (DEC) for the automated discovery of physical models.
DEC provides building blocks for the discrete analogue of field theories, which are beyond the state-of-the-art applications of SR to physical problems.
We prove the effectiveness of our methodology by re-discovering three models of Continuum Physics from synthetic experimental data.
arXiv Detail & Related papers (2023-10-10T13:23:05Z) - MD-inferred neural network monoclinic finite-strain hyperelasticity
models for $\beta$-HMX: Sobolev training and validation against physical
constraints [2.3816618027381438]
We train and validate neural networks to predict the anisotropic elastic response of the monoclinic organic molecular crystal $beta$-HMX.
We compare the neural networks' training efficiency under different Sobolev constraints and assess the models' accuracy and robustness against MD benchmarks for $beta$-HMX.
arXiv Detail & Related papers (2021-11-29T23:38:31Z) - Pseudo-Spherical Contrastive Divergence [119.28384561517292]
We propose pseudo-spherical contrastive divergence (PS-CD) to generalize maximum learning likelihood of energy-based models.
PS-CD avoids the intractable partition function and provides a generalized family of learning objectives.
arXiv Detail & Related papers (2021-11-01T09:17:15Z) - Post-mortem on a deep learning contest: a Simpson's paradox and the
complementary roles of scale metrics versus shape metrics [61.49826776409194]
We analyze a corpus of models made publicly-available for a contest to predict the generalization accuracy of neural network (NN) models.
We identify what amounts to a Simpson's paradox: where "scale" metrics perform well overall but perform poorly on sub partitions of the data.
We present two novel shape metrics, one data-independent, and the other data-dependent, which can predict trends in the test accuracy of a series of NNs.
arXiv Detail & Related papers (2021-06-01T19:19:49Z) - Learning Partially Known Stochastic Dynamics with Empirical PAC Bayes [12.44342023476206]
This paper presents a recipe to improve the prediction accuracy of such models in three steps.
We observe in our experiments that this recipe effectively translates partial and noisy prior knowledge into an improved model fit.
arXiv Detail & Related papers (2020-06-17T14:47:06Z) - Multiplicative noise and heavy tails in stochastic optimization [62.993432503309485]
empirical optimization is central to modern machine learning, but its role in its success is still unclear.
We show that it commonly arises in parameters of discrete multiplicative noise due to variance.
A detailed analysis is conducted in which we describe on key factors, including recent step size, and data, all exhibit similar results on state-of-the-art neural network models.
arXiv Detail & Related papers (2020-06-11T09:58:01Z) - Repulsive Mixture Models of Exponential Family PCA for Clustering [127.90219303669006]
The mixture extension of exponential family principal component analysis ( EPCA) was designed to encode much more structural information about data distribution than the traditional EPCA.
The traditional mixture of local EPCAs has the problem of model redundancy, i.e., overlaps among mixing components, which may cause ambiguity for data clustering.
In this paper, a repulsiveness-encouraging prior is introduced among mixing components and a diversified EPCA mixture (DEPCAM) model is developed in the Bayesian framework.
arXiv Detail & Related papers (2020-04-07T04:07:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.