3DS: Decomposed Difficulty Data Selection's Case Study on LLM Medical Domain Adaptation
- URL: http://arxiv.org/abs/2410.10901v1
- Date: Sun, 13 Oct 2024 02:29:00 GMT
- Title: 3DS: Decomposed Difficulty Data Selection's Case Study on LLM Medical Domain Adaptation
- Authors: Hongxin Ding, Yue Fang, Runchuan Zhu, Xinke Jiang, Jinyang Zhang, Yongxin Xu, Xu Chu, Junfeng Zhao, Yasha Wang,
- Abstract summary: Large Language Models excel in general tasks but struggle in specialized domains like healthcare.
We propose a two-stage model-centric data selection framework, De Difficulty Data Selection (3DS)
Our experiments on real-world healthcare datasets demonstrate the superiority of 3DS over exisiting methods in accuracy by over 5.29%.
- Score: 13.058299222554295
- License:
- Abstract: Large Language Models(LLMs) excel in general tasks but struggle in specialized domains like healthcare due to limited domain-specific knowledge.Supervised Fine-Tuning(SFT) data construction for domain adaptation often relies on heuristic methods, such as GPT-4 annotation or manual data selection, with a data-centric focus on presumed diverse, high-quality datasets. However, these methods overlook the model's inherent knowledge distribution, introducing noise, redundancy, and irrelevant data, leading to a mismatch between the selected data and the model's learning task, resulting in suboptimal performance. To address this, we propose a two-stage model-centric data selection framework, Decomposed Difficulty Data Selection (3DS), which aligns data with the model's knowledge distribution for optimized adaptation. In Stage1, we apply Prompt-Driven Data Selection via Explicit Alignment, where the the model filters irrelevant or redundant data based on its internal knowledge. In Stage2, we perform Decomposed Difficulty Data Selection, where data selection is guided by our defined difficulty decomposition, using three metrics: Instruction Understanding, Response Confidence, and Response Correctness. Additionally, an attention-based importance weighting mechanism captures token importance for more accurate difficulty calibration. This two-stage approach ensures the selected data is not only aligned with the model's knowledge and preferences but also appropriately challenging for the model to learn, leading to more effective and targeted domain adaptation. In the case study of the medical domain, our extensive experiments on real-world healthcare datasets demonstrate the superiority of 3DS over exisiting methods in accuracy by over 5.29%. Our dataset and code will be open-sourced at https://anonymous.4open.science/r/3DS-E67F.
Related papers
- LESS: Selecting Influential Data for Targeted Instruction Tuning [64.78894228923619]
We propose LESS, an efficient algorithm to estimate data influences and perform Low-rank gradiEnt Similarity Search for instruction data selection.
We show that training on a LESS-selected 5% of the data can often outperform training on the full dataset across diverse downstream tasks.
Our method goes beyond surface form cues to identify data that the necessary reasoning skills for the intended downstream application.
arXiv Detail & Related papers (2024-02-06T19:18:04Z) - DsDm: Model-Aware Dataset Selection with Datamodels [81.01744199870043]
Standard practice is to filter for examples that match human notions of data quality.
We find that selecting according to similarity with "high quality" data sources may not increase (and can even hurt) performance compared to randomly selecting data.
Our framework avoids handpicked notions of data quality, and instead models explicitly how the learning process uses train datapoints to predict on the target tasks.
arXiv Detail & Related papers (2024-01-23T17:22:00Z) - D2 Pruning: Message Passing for Balancing Diversity and Difficulty in
Data Pruning [70.98091101459421]
Coreset selection seeks to select a subset of the training data so as to maximize the performance of models trained on this subset, also referred to as coreset.
We propose a novel pruning algorithm, D2 Pruning, that uses forward and reverse message passing over this dataset graph for coreset selection.
Results show that D2 Pruning improves coreset selection over previous state-of-the-art methods for up to 70% pruning rates.
arXiv Detail & Related papers (2023-10-11T23:01:29Z) - Exploring Data Redundancy in Real-world Image Classification through
Data Selection [20.389636181891515]
Deep learning models often require large amounts of data for training, leading to increased costs.
We present two data valuation metrics based on Synaptic Intelligence and gradient norms, respectively, to study redundancy in real-world image data.
Online and offline data selection algorithms are then proposed via clustering and grouping based on the examined data values.
arXiv Detail & Related papers (2023-06-25T03:31:05Z) - Data-Driven Offline Decision-Making via Invariant Representation
Learning [97.49309949598505]
offline data-driven decision-making involves synthesizing optimized decisions with no active interaction.
A key challenge is distributional shift: when we optimize with respect to the input into a model trained from offline data, it is easy to produce an out-of-distribution (OOD) input that appears erroneously good.
In this paper, we formulate offline data-driven decision-making as domain adaptation, where the goal is to make accurate predictions for the value of optimized decisions.
arXiv Detail & Related papers (2022-11-21T11:01:37Z) - Open-Set Semi-Supervised Learning for 3D Point Cloud Understanding [62.17020485045456]
It is commonly assumed in semi-supervised learning (SSL) that the unlabeled data are drawn from the same distribution as that of the labeled ones.
We propose to selectively utilize unlabeled data through sample weighting, so that only conducive unlabeled data would be prioritized.
arXiv Detail & Related papers (2022-05-02T16:09:17Z) - Data-SUITE: Data-centric identification of in-distribution incongruous
examples [81.21462458089142]
Data-SUITE is a data-centric framework to identify incongruous regions of in-distribution (ID) data.
We empirically validate Data-SUITE's performance and coverage guarantees.
arXiv Detail & Related papers (2022-02-17T18:58:31Z) - Selective Forgetting of Deep Networks at a Finer Level than Samples [0.0]
We formulate selective forgetting for classification tasks at a finer level than the samples' level.
We specify the finer level based on four datasets distinguished by two conditions.
Experimental results show that the proposed methods can make the model forget to use specific information for classification.
arXiv Detail & Related papers (2020-12-22T06:17:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.