CHASe: Client Heterogeneity-Aware Data Selection for Effective Federated Active Learning
- URL: http://arxiv.org/abs/2504.17448v1
- Date: Thu, 24 Apr 2025 11:28:00 GMT
- Title: CHASe: Client Heterogeneity-Aware Data Selection for Effective Federated Active Learning
- Authors: Jun Zhang, Jue Wang, Huan Li, Zhongle Xie, Ke Chen, Lidan Shou,
- Abstract summary: We propose CHASe (Client Heterogeneity-Aware Data Selection), specifically designed for Federated Active Learning (FAL)<n> CHASe focuses on identifying those unlabeled samples with high epistemic variations (EVs), which notably oscillate around the decision boundaries during training.<n> Experiments show that CHASe surpasses various established baselines in terms of effectiveness and efficiency, validated across diverse datasets, model complexities, and heterogeneous federation settings.
- Score: 22.38403602956309
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Active learning (AL) reduces human annotation costs for machine learning systems by strategically selecting the most informative unlabeled data for annotation, but performing it individually may still be insufficient due to restricted data diversity and annotation budget. Federated Active Learning (FAL) addresses this by facilitating collaborative data selection and model training, while preserving the confidentiality of raw data samples. Yet, existing FAL methods fail to account for the heterogeneity of data distribution across clients and the associated fluctuations in global and local model parameters, adversely affecting model accuracy. To overcome these challenges, we propose CHASe (Client Heterogeneity-Aware Data Selection), specifically designed for FAL. CHASe focuses on identifying those unlabeled samples with high epistemic variations (EVs), which notably oscillate around the decision boundaries during training. To achieve both effectiveness and efficiency, \model{} encompasses techniques for 1) tracking EVs by analyzing inference inconsistencies across training epochs, 2) calibrating decision boundaries of inaccurate models with a new alignment loss, and 3) enhancing data selection efficiency via a data freeze and awaken mechanism with subset sampling. Experiments show that CHASe surpasses various established baselines in terms of effectiveness and efficiency, validated across diverse datasets, model complexities, and heterogeneous federation settings.
Related papers
- FedAWA: Adaptive Optimization of Aggregation Weights in Federated Learning Using Client Vectors [50.131271229165165]
Federated Learning (FL) has emerged as a promising framework for distributed machine learning.<n>Data heterogeneity resulting from differences across user behaviors, preferences, and device characteristics poses a significant challenge for federated learning.<n>We propose Adaptive Weight Aggregation (FedAWA), a novel method that adaptively adjusts aggregation weights based on client vectors during the learning process.
arXiv Detail & Related papers (2025-03-20T04:49:40Z) - HFedCKD: Toward Robust Heterogeneous Federated Learning via Data-free Knowledge Distillation and Two-way Contrast [10.652998357266934]
We propose a system heterogeneous federation method based on data-free knowledge distillation and two-way contrast (HFedCKD)
HFedCKD effectively alleviates the knowledge offset caused by a low participation rate under data-free knowledge distillation and improves the performance and stability of the model.
We conduct extensive experiments on image and IoT datasets to comprehensively evaluate and verify the generalization and robustness of the proposed HFedCKD framework.
arXiv Detail & Related papers (2025-03-09T08:32:57Z) - Propensity-driven Uncertainty Learning for Sample Exploration in Source-Free Active Domain Adaptation [19.620523416385346]
Source-free active domain adaptation (SFADA) addresses the challenge of adapting a pre-trained model to new domains without access to source data.<n>This scenario is particularly relevant in real-world applications where data privacy, storage limitations, or labeling costs are significant concerns.<n>We propose the Propensity-driven Uncertainty Learning (ProULearn) framework to effectively select more informative samples without frequently requesting human annotations.
arXiv Detail & Related papers (2025-01-23T10:05:25Z) - FedDUAL: A Dual-Strategy with Adaptive Loss and Dynamic Aggregation for Mitigating Data Heterogeneity in Federated Learning [12.307490659840845]
Federated Learning (FL) combines locally optimized models from various clients into a unified global model.<n>FL encounters significant challenges such as performance degradation, slower convergence, and reduced robustness of the global model.<n>We introduce an innovative dual-strategy approach designed to effectively resolve these issues.
arXiv Detail & Related papers (2024-12-05T18:42:29Z) - Adversarial Federated Consensus Learning for Surface Defect Classification Under Data Heterogeneity in IIoT [8.48069043458347]
It's difficult to collect and centralize sufficient training data from various entities in Industrial Internet of Things (IIoT)
Federated learning (FL) provides a solution by enabling collaborative global model training across clients.
We propose a novel personalized FL approach, named Adversarial Federated Consensus Learning (AFedCL)
arXiv Detail & Related papers (2024-09-24T03:59:32Z) - One-Shot Heterogeneous Federated Learning with Local Model-Guided Diffusion Models [40.83058938096914]
FedLMG is a one-shot Federated learning method with Local Model-Guided diffusion models.<n>Clients do not need access to any foundation models but only train and upload their local models.
arXiv Detail & Related papers (2023-11-15T11:11:25Z) - Adapter-based Selective Knowledge Distillation for Federated
Multi-domain Meeting Summarization [36.916155654985936]
Meeting summarization has emerged as a promising technique for providing users with condensed summaries.
We propose adapter-based Federated Selective Knowledge Distillation (AdaFedSelecKD) for training performant client models.
arXiv Detail & Related papers (2023-08-07T03:34:01Z) - Delving into Identify-Emphasize Paradigm for Combating Unknown Bias [52.76758938921129]
We propose an effective bias-conflicting scoring method (ECS) to boost the identification accuracy.
We also propose gradient alignment (GA) to balance the contributions of the mined bias-aligned and bias-conflicting samples.
Experiments are conducted on multiple datasets in various settings, demonstrating that the proposed solution can mitigate the impact of unknown biases.
arXiv Detail & Related papers (2023-02-22T14:50:24Z) - Fed-CBS: A Heterogeneity-Aware Client Sampling Mechanism for Federated
Learning via Class-Imbalance Reduction [76.26710990597498]
We show that the class-imbalance of the grouped data from randomly selected clients can lead to significant performance degradation.
Based on our key observation, we design an efficient client sampling mechanism, i.e., Federated Class-balanced Sampling (Fed-CBS)
In particular, we propose a measure of class-imbalance and then employ homomorphic encryption to derive this measure in a privacy-preserving way.
arXiv Detail & Related papers (2022-09-30T05:42:56Z) - DRFLM: Distributionally Robust Federated Learning with Inter-client
Noise via Local Mixup [58.894901088797376]
federated learning has emerged as a promising approach for training a global model using data from multiple organizations without leaking their raw data.
We propose a general framework to solve the above two challenges simultaneously.
We provide comprehensive theoretical analysis including robustness analysis, convergence analysis, and generalization ability.
arXiv Detail & Related papers (2022-04-16T08:08:29Z) - Learning while Respecting Privacy and Robustness to Distributional
Uncertainties and Adversarial Data [66.78671826743884]
The distributionally robust optimization framework is considered for training a parametric model.
The objective is to endow the trained model with robustness against adversarially manipulated input data.
Proposed algorithms offer robustness with little overhead.
arXiv Detail & Related papers (2020-07-07T18:25:25Z) - Causal Feature Selection for Algorithmic Fairness [61.767399505764736]
We consider fairness in the integration component of data management.
We propose an approach to identify a sub-collection of features that ensure the fairness of the dataset.
arXiv Detail & Related papers (2020-06-10T20:20:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.