論文の概要: Improving Generalization on the ProcGen Benchmark with Simple Architectural Changes and Scale
- arxiv url: http://arxiv.org/abs/2410.10905v1
- Date: Sun, 13 Oct 2024 19:28:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-16 14:01:45.796910
- Title: Improving Generalization on the ProcGen Benchmark with Simple Architectural Changes and Scale
- Title(参考訳): シンプルなアーキテクチャ変更とスケールによるProcGenベンチマークの一般化の改善
- Authors: Andrew Jesson, Yiding Jiang,
- Abstract要約: 近年の強化学習(RL)と単純なアーキテクチャ変更が組み合わさって、ProcGenベンチマークの一般化が大幅に改善されている。
2次元の畳み込みレイヤを3次元の畳み込みレイヤに置き換え、レイヤ毎の畳み込みカーネル数をスケールアップする。
- 参考スコア(独自算出の注目度): 11.373533329811023
- License:
- Abstract: We demonstrate that recent advances in reinforcement learning (RL) combined with simple architectural changes significantly improves generalization on the ProcGen benchmark. These changes are frame stacking, replacing 2D convolutional layers with 3D convolutional layers, and scaling up the number of convolutional kernels per layer. Experimental results using a single set of hyperparameters across all environments show a 37.9\% reduction in the optimality gap compared to the baseline (from 0.58 to 0.36). This performance matches or exceeds current state-of-the-art methods. The proposed changes are largely orthogonal and therefore complementary to the existing approaches for improving generalization in RL, and our results suggest that further exploration in this direction could yield substantial improvements in addressing generalization challenges in deep reinforcement learning.
- Abstract(参考訳): 近年の強化学習(RL)の進歩と単純なアーキテクチャ変更が組み合わさって,ProcGenベンチマークの一般化を著しく改善したことを示す。
これらの変更は、フレームの積み重ね、2次元の畳み込みレイヤを3次元の畳み込みレイヤに置き換え、レイヤごとの畳み込みカーネル数をスケールアップする。
すべての環境にまたがる1組のハイパーパラメータを用いた実験の結果、ベースライン(0.58から0.36)と比較して、最適性ギャップが37.9\%減少していることが示された。
この性能は現在の最先端の手法と一致するか、超える。
提案手法は直交的であり,RLの一般化を改良するための既存手法と相補的であり,本手法のさらなる探索により,深層強化学習における一般化課題への対処が大幅に改善されることが示唆された。
関連論文リスト
- DyGASR: Dynamic Generalized Exponential Splatting with Surface Alignment for Accelerated 3D Mesh Reconstruction [1.2891210250935148]
従来の3次元ガウス関数の代わりに一般化指数関数を用いて粒子数を減少させるDyGASRを提案する。
また,GSR(Generalized Surface Regularization)を導入し,各点雲の最小のスケーリングベクトルをゼロにする。
提案手法は既存の3DGSベースのメッシュ再構成手法を超越し,25%の高速化,30%のメモリ使用量の削減を実現している。
論文 参考訳(メタデータ) (2024-11-14T03:19:57Z) - Exact, Tractable Gauss-Newton Optimization in Deep Reversible Architectures Reveal Poor Generalization [52.16435732772263]
多くのアプリケーションにおいて、ディープニューラルネットワークのトレーニングを加速する2階最適化が示されている。
しかし、二階法の一般化特性についてはいまだ議論が続いている。
我々は、Gauss-Newton (GN) の正確な更新が、ディープアーキテクチャのクラスにおいて、牽引可能な形式を取ることを初めて示す。
論文 参考訳(メタデータ) (2024-11-12T17:58:40Z) - PEP-GS: Perceptually-Enhanced Precise Structured 3D Gaussians for View-Adaptive Rendering [3.285531771049763]
ビューアダプティブレンダリングのための構造化3次元ガウスの最近の進歩は、ニューラルシーン表現において有望な結果を示している。
PEP-GSは3つの重要な革新を通じて構造化された3次元ガウシアンを強化する新しいフレームワークである。
複数のデータセットにわたる包括的な評価は、現在の最先端の手法と比較して、これらの改善が特に困難なシナリオで顕著であることを示している。
論文 参考訳(メタデータ) (2024-11-08T17:42:02Z) - Efficient Real-world Image Super-Resolution Via Adaptive Directional Gradient Convolution [80.85121353651554]
畳み込みカーネル内でのカーネル単位の微分演算を導入し、学習可能な方向勾配畳み込みを開発する。
これらの畳み込みは、新しい線形重み付け機構と平行に統合され、適応方向勾配畳み込み(DGConv)を形成する。
さらに,適応情報相互作用ブロック(AIIBlock)を設計し,テクスチャとコントラストの強化のバランスをとるとともに,相互依存性を慎重に検討し,単純な積み重ねによるリアルSRのためのDGPNetを作成する。
論文 参考訳(メタデータ) (2024-05-11T14:21:40Z) - Reparameterization through Spatial Gradient Scaling [69.27487006953852]
リパラメータ化は、学習中に畳み込み層を等価なマルチブランチ構造に変換することによって、ディープニューラルネットワークの一般化を改善することを目的としている。
本稿では,畳み込みネットワークにおける重み間の学習焦点を再分配する空間勾配スケーリング手法を提案する。
論文 参考訳(メタデータ) (2023-03-05T17:57:33Z) - Full Stack Optimization of Transformer Inference: a Survey [58.55475772110702]
トランスフォーマーモデルは広範囲のアプリケーションにまたがって優れた精度を実現する。
最近のTransformerモデルの推測に必要な計算量と帯域幅は、かなり増加しています。
Transformerモデルをより効率的にすることに注力している。
論文 参考訳(メタデータ) (2023-02-27T18:18:13Z) - Improving Covariance Conditioning of the SVD Meta-layer by Orthogonality [65.67315418971688]
最寄り直交勾配(NOG)と最適学習率(OLR)を提案する。
視覚認識実験は,共分散条件と一般化を同時に改善できることを実証した。
論文 参考訳(メタデータ) (2022-07-05T15:39:29Z) - Exploiting Explainable Metrics for Augmented SGD [43.00691899858408]
最適化下での学習が実際にどのように機能するか、また、特定の戦略が他の方法よりも優れている理由について、未解決の疑問がいくつかある。
ネットワーク層内の冗長な情報を計測する新しい説明可能性指標を提案する。
次に、これらの指標を利用して、各レイヤの学習率を適応的に調整し、一般化性能を向上させることにより、グラディエント・ディフレッシュ(SGD)を増大させる。
論文 参考訳(メタデータ) (2022-03-31T00:16:44Z) - Direct Mutation and Crossover in Genetic Algorithms Applied to
Reinforcement Learning Tasks [0.9137554315375919]
本稿では、遺伝的アルゴリズム(GA)を用いて神経進化を適用し、最適な行動エージェントを生成するニューラルネットワークの重みを見つけることに焦点を当てる。
本稿では,データ効率と収束速度を初期実装と比較して改善する2つの新しい修正法を提案する。
論文 参考訳(メタデータ) (2022-01-13T07:19:28Z) - Inception Convolution with Efficient Dilation Search [121.41030859447487]
拡散畳み込みは、効果的な受容場を制御し、オブジェクトの大規模な分散を処理するための標準的な畳み込みニューラルネットワークの重要な変異体である。
そこで我々は,異なる軸,チャネル,層間の独立な拡散を有する拡張畳み込みの新たな変異体,すなわち開始(拡張)畳み込みを提案する。
本稿では,データに複雑なインセプション・コンボリューションを適合させる実用的な手法を探索し,統計的最適化に基づく簡易かつ効果的な拡張探索アルゴリズム(EDO)を開発した。
論文 参考訳(メタデータ) (2020-12-25T14:58:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。