論文の概要: Direct Mutation and Crossover in Genetic Algorithms Applied to
Reinforcement Learning Tasks
- arxiv url: http://arxiv.org/abs/2201.04815v1
- Date: Thu, 13 Jan 2022 07:19:28 GMT
- ステータス: 処理完了
- システム内更新日: 2022-01-14 23:09:47.881623
- Title: Direct Mutation and Crossover in Genetic Algorithms Applied to
Reinforcement Learning Tasks
- Title(参考訳): 強化学習タスクにおける遺伝的アルゴリズムの直接的変異とクロスオーバー
- Authors: Tarek Faycal and Claudio Zito
- Abstract要約: 本稿では、遺伝的アルゴリズム(GA)を用いて神経進化を適用し、最適な行動エージェントを生成するニューラルネットワークの重みを見つけることに焦点を当てる。
本稿では,データ効率と収束速度を初期実装と比較して改善する2つの新しい修正法を提案する。
- 参考スコア(独自算出の注目度): 0.9137554315375919
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neuroevolution has recently been shown to be quite competitive in
reinforcement learning (RL) settings, and is able to alleviate some of the
drawbacks of gradient-based approaches. This paper will focus on applying
neuroevolution using a simple genetic algorithm (GA) to find the weights of a
neural network that produce optimally behaving agents. In addition, we present
two novel modifications that improve the data efficiency and speed of
convergence when compared to the initial implementation. The modifications are
evaluated on the FrozenLake environment provided by OpenAI gym and prove to be
significantly better than the baseline approach.
- Abstract(参考訳): 神経進化は近年、強化学習(RL)設定において非常に競争力があることが示されており、勾配に基づくアプローチの欠点を緩和することができる。
本稿では、遺伝的アルゴリズム(GA)を用いて神経進化を適用し、最適な行動エージェントを生成するニューラルネットワークの重みを見つけることに焦点を当てる。
また,初期実装と比較してデータ効率と収束速度が向上する2つの改良点を提案する。
OpenAI体育館が提供するFrozenLake環境において, 改良が評価され, ベースラインアプローチよりもかなり良いことが証明された。
関連論文リスト
- Optimal feature rescaling in machine learning based on neural networks [0.0]
遺伝的アルゴリズム(GA)により入力特徴の最適再スケーリング(OFR)を行う。
OFRは、トレーニングに使用される勾配ベースのアルゴリズムの条件付けを改善する入力空間を再設定する。
この手法は、実産業プロセスの結果をモデル化したFFNNでテストされている。
論文 参考訳(メタデータ) (2024-02-13T21:57:31Z) - Genetic Algorithm enhanced by Deep Reinforcement Learning in parent
selection mechanism and mutation : Minimizing makespan in permutation flow
shop scheduling problems [0.18846515534317265]
RL+GA法はフローショップスケジューリング問題(FSP)で特に検証された。
このハイブリッドアルゴリズムはニューラルネットワーク(NN)を導入し、Qラーニング(Q-learning)というオフ政治手法を使用する。
本研究は, プリミティブGAの性能向上におけるRL+GAアプローチの有効性を明らかにするものである。
論文 参考訳(メタデータ) (2023-11-10T08:51:42Z) - Stochastic Unrolled Federated Learning [85.6993263983062]
本稿では,UnRolled Federated Learning (SURF)を導入する。
提案手法は,この拡張における2つの課題,すなわち,非学習者へのデータセット全体の供給の必要性と,フェデレート学習の分散的性質に対処する。
論文 参考訳(メタデータ) (2023-05-24T17:26:22Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
物理インフォームドニューラルネットワーク(PINN)は、前方および逆微分方程式問題の解法として効果的に実証されている。
PINNは、近似すべきターゲット関数が高周波またはマルチスケールの特徴を示す場合、トレーニング障害に閉じ込められる。
本稿では,暗黙的勾配降下法(ISGD)を用いてPINNを訓練し,トレーニングプロセスの安定性を向上させることを提案する。
論文 参考訳(メタデータ) (2023-03-03T08:17:47Z) - Low-Variance Forward Gradients using Direct Feedback Alignment and
Momentum [0.0]
本稿では,アクティビティ・パータード・フォワード・グラディエントと直接フィードバックアライメントとモーメントを組み合わせたアルゴリズムを提案する。
我々のアプローチは、バックプロパゲーションの他のローカル代替手段と比較して、より高速な収束と性能の向上を可能にします。
論文 参考訳(メタデータ) (2022-12-14T15:30:56Z) - A comparative study of back propagation and its alternatives on
multilayer perceptrons [0.0]
フィードフォワードニューラルネットワークのバックパスをトレーニングするデファクトアルゴリズムはバックプロパゲーション(BP)である
ほぼすべての異なるアクティベーション関数を使用することで、ディープニューラルネットワークの層を通して勾配を後方に伝播させるのが効率的かつ効果的になった。
本稿では、畳み込みニューラルネットワーク(CNN)における予測とニューロンの安定性と類似性を解析し、その1つのアルゴリズムの新たなバリエーションを提案する。
論文 参考訳(メタデータ) (2022-05-31T18:44:13Z) - Cogradient Descent for Dependable Learning [64.02052988844301]
双線形最適化問題に対処するために,CoGDアルゴリズムに基づく信頼度の高い学習法を提案する。
CoGDは、ある変数がスパーシティ制約を持つ場合の双線形問題を解くために導入された。
また、特徴と重みの関連を分解するためにも使用できるため、畳み込みニューラルネットワーク(CNN)をより良く訓練するための我々の手法をさらに一般化することができる。
論文 参考訳(メタデータ) (2021-06-20T04:28:20Z) - Adam revisited: a weighted past gradients perspective [57.54752290924522]
本稿では,非収束問題に取り組むための適応法重み付け適応アルゴリズム(wada)を提案する。
私たちは、WADAが重み付きデータ依存の後悔境界を達成できることを証明します。
論文 参考訳(メタデータ) (2021-01-01T14:01:52Z) - Adaptive Gradient Method with Resilience and Momentum [120.83046824742455]
レジリエンスとモメンタム(AdaRem)を用いた適応勾配法を提案する。
AdaRemは、過去の1つのパラメータの変化方向が現在の勾配の方向と一致しているかどうかに応じてパラメータワイズ学習率を調整する。
本手法は,学習速度とテスト誤差の観点から,従来の適応学習率に基づくアルゴリズムよりも優れていた。
論文 参考訳(メタデータ) (2020-10-21T14:49:00Z) - Communication-Efficient Distributed Stochastic AUC Maximization with
Deep Neural Networks [50.42141893913188]
本稿では,ニューラルネットワークを用いた大規模AUCのための分散変数について検討する。
我々のモデルは通信ラウンドをはるかに少なくし、理論上はまだ多くの通信ラウンドを必要としています。
いくつかのデータセットに対する実験は、我々の理論の有効性を示し、我々の理論を裏付けるものである。
論文 参考訳(メタデータ) (2020-05-05T18:08:23Z) - Semi-Implicit Back Propagation [1.5533842336139065]
ニューラルネットワークトレーニングのための半単純バック伝搬法を提案する。
ニューロンの差は後方方向に伝播し、パラメータは近位写像で更新される。
MNISTとCIFAR-10の両方の実験により、提案アルゴリズムは損失減少とトレーニング/検証の精度の両方において、より良い性能をもたらすことが示された。
論文 参考訳(メタデータ) (2020-02-10T03:26:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。