Data-Aware Training Quality Monitoring and Certification for Reliable Deep Learning
- URL: http://arxiv.org/abs/2410.10984v1
- Date: Mon, 14 Oct 2024 18:13:22 GMT
- Title: Data-Aware Training Quality Monitoring and Certification for Reliable Deep Learning
- Authors: Farhang Yeganegi, Arian Eamaz, Mojtaba Soltanalian,
- Abstract summary: We introduce YES training bounds, a novel framework for real-time, data-aware certification and monitoring of neural network training.
We show that YES bounds offer insights beyond conventional local optimization perspectives, such as identifying when training losses plateau in suboptimal regions.
We offer a powerful tool for real-time evaluation, setting a new standard for training quality assurance in deep learning.
- Score: 13.846014191157405
- License:
- Abstract: Deep learning models excel at capturing complex representations through sequential layers of linear and non-linear transformations, yet their inherent black-box nature and multi-modal training landscape raise critical concerns about reliability, robustness, and safety, particularly in high-stakes applications. To address these challenges, we introduce YES training bounds, a novel framework for real-time, data-aware certification and monitoring of neural network training. The YES bounds evaluate the efficiency of data utilization and optimization dynamics, providing an effective tool for assessing progress and detecting suboptimal behavior during training. Our experiments show that the YES bounds offer insights beyond conventional local optimization perspectives, such as identifying when training losses plateau in suboptimal regions. Validated on both synthetic and real data, including image denoising tasks, the bounds prove effective in certifying training quality and guiding adjustments to enhance model performance. By integrating these bounds into a color-coded cloud-based monitoring system, we offer a powerful tool for real-time evaluation, setting a new standard for training quality assurance in deep learning.
Related papers
- Deciphering Cross-Modal Alignment in Large Vision-Language Models with Modality Integration Rate [118.37653302885607]
We present the Modality Integration Rate (MIR), an effective, robust, and generalized metric to indicate the multi-modal pre-training quality of Large Vision Language Models (LVLMs)
MIR is indicative about training data selection, training strategy schedule, and model architecture design to get better pre-training results.
arXiv Detail & Related papers (2024-10-09T17:59:04Z) - Mind the Interference: Retaining Pre-trained Knowledge in Parameter Efficient Continual Learning of Vision-Language Models [79.28821338925947]
Domain-Class Incremental Learning is a realistic but challenging continual learning scenario.
To handle these diverse tasks, pre-trained Vision-Language Models (VLMs) are introduced for their strong generalizability.
This incurs a new problem: the knowledge encoded in the pre-trained VLMs may be disturbed when adapting to new tasks, compromising their inherent zero-shot ability.
Existing methods tackle it by tuning VLMs with knowledge distillation on extra datasets, which demands heavy overhead.
We propose the Distribution-aware Interference-free Knowledge Integration (DIKI) framework, retaining pre-trained knowledge of
arXiv Detail & Related papers (2024-07-07T12:19:37Z) - Automatic UAV-based Airport Pavement Inspection Using Mixed Real and
Virtual Scenarios [3.0874677990361246]
We propose a vision-based approach to automatically identify pavement distress using images captured by UAVs.
The proposed method is based on Deep Learning (DL) to segment defects in the image.
We demonstrate that the use of a mixed dataset composed of synthetic and real training images yields better results when testing the training models in real application scenarios.
arXiv Detail & Related papers (2024-01-11T16:30:07Z) - Assurance for Deployed Continual Learning Systems [0.0]
The authors created a new framework for safely performing continual learning with a deep learning computer vision algorithm.
The safety framework includes several features, such as an ensemble of convolutional neural networks to perform image classification.
The results also show the framework can detect when the system is no longer performing safely.
arXiv Detail & Related papers (2023-11-16T22:22:13Z) - CTP: Towards Vision-Language Continual Pretraining via Compatible
Momentum Contrast and Topology Preservation [128.00940554196976]
Vision-Language Continual Pretraining (VLCP) has shown impressive results on diverse downstream tasks by offline training on large-scale datasets.
To support the study of Vision-Language Continual Pretraining (VLCP), we first contribute a comprehensive and unified benchmark dataset P9D.
The data from each industry as an independent task supports continual learning and conforms to the real-world long-tail nature to simulate pretraining on web data.
arXiv Detail & Related papers (2023-08-14T13:53:18Z) - ALP: Action-Aware Embodied Learning for Perception [60.64801970249279]
We introduce Action-Aware Embodied Learning for Perception (ALP)
ALP incorporates action information into representation learning through a combination of optimizing a reinforcement learning policy and an inverse dynamics prediction objective.
We show that ALP outperforms existing baselines in several downstream perception tasks.
arXiv Detail & Related papers (2023-06-16T21:51:04Z) - Towards Sequence-Level Training for Visual Tracking [60.95799261482857]
This work introduces a sequence-level training strategy for visual tracking based on reinforcement learning.
Four representative tracking models, SiamRPN++, SiamAttn, TransT, and TrDiMP, consistently improve by incorporating the proposed methods in training.
arXiv Detail & Related papers (2022-08-11T13:15:36Z) - Training Efficiency and Robustness in Deep Learning [2.6451769337566406]
We study approaches to improve the training efficiency and robustness of deep learning models.
We find that prioritizing learning on more informative training data increases convergence speed and improves generalization performance on test data.
We show that a redundancy-aware modification to the sampling of training data improves the training speed and develops an efficient method for detecting the diversity of training signal.
arXiv Detail & Related papers (2021-12-02T17:11:33Z) - Self-Adaptive Training: Bridging the Supervised and Self-Supervised
Learning [16.765461276790944]
Self-adaptive training is a unified training algorithm that dynamically calibrates and enhances training process by model predictions without incurring extra computational cost.
We analyze the training dynamics of deep networks on training data corrupted by, e.g., random noise and adversarial examples.
Our analysis shows that model predictions are able to magnify useful underlying information in data and this phenomenon occurs broadly even in the absence of emphany label information.
arXiv Detail & Related papers (2021-01-21T17:17:30Z) - Auto-Rectify Network for Unsupervised Indoor Depth Estimation [119.82412041164372]
We establish that the complex ego-motions exhibited in handheld settings are a critical obstacle for learning depth.
We propose a data pre-processing method that rectifies training images by removing their relative rotations for effective learning.
Our results outperform the previous unsupervised SOTA method by a large margin on the challenging NYUv2 dataset.
arXiv Detail & Related papers (2020-06-04T08:59:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.