GraFPrint: A GNN-Based Approach for Audio Identification
- URL: http://arxiv.org/abs/2410.10994v1
- Date: Mon, 14 Oct 2024 18:20:09 GMT
- Title: GraFPrint: A GNN-Based Approach for Audio Identification
- Authors: Aditya Bhattacharjee, Shubhr Singh, Emmanouil Benetos,
- Abstract summary: GraFPrint is an audio identification framework that leverages the structural learning capabilities of Graph Neural Networks (GNNs) to create robust audio fingerprints.
GraFPrint demonstrates superior performance on large-scale datasets at various levels of granularity, proving to be both lightweight and scalable.
- Score: 11.71702857714935
- License:
- Abstract: This paper introduces GraFPrint, an audio identification framework that leverages the structural learning capabilities of Graph Neural Networks (GNNs) to create robust audio fingerprints. Our method constructs a k-nearest neighbor (k-NN) graph from time-frequency representations and applies max-relative graph convolutions to encode local and global information. The network is trained using a self-supervised contrastive approach, which enhances resilience to ambient distortions by optimizing feature representation. GraFPrint demonstrates superior performance on large-scale datasets at various levels of granularity, proving to be both lightweight and scalable, making it suitable for real-world applications with extensive reference databases.
Related papers
- Language Models are Graph Learners [70.14063765424012]
Language Models (LMs) are challenging the dominance of domain-specific models, including Graph Neural Networks (GNNs) and Graph Transformers (GTs)
We propose a novel approach that empowers off-the-shelf LMs to achieve performance comparable to state-of-the-art GNNs on node classification tasks.
arXiv Detail & Related papers (2024-10-03T08:27:54Z) - Unveiling Global Interactive Patterns across Graphs: Towards Interpretable Graph Neural Networks [31.29616732552006]
Graph Neural Networks (GNNs) have emerged as a prominent framework for graph mining.
This paper proposes a novel intrinsically interpretable scheme for graph classification.
Global Interactive Pattern (GIP) learning introduces learnable global interactive patterns to explicitly interpret decisions.
arXiv Detail & Related papers (2024-07-02T06:31:13Z) - A Pure Transformer Pretraining Framework on Text-attributed Graphs [50.833130854272774]
We introduce a feature-centric pretraining perspective by treating graph structure as a prior.
Our framework, Graph Sequence Pretraining with Transformer (GSPT), samples node contexts through random walks.
GSPT can be easily adapted to both node classification and link prediction, demonstrating promising empirical success on various datasets.
arXiv Detail & Related papers (2024-06-19T22:30:08Z) - Robust Graph Structure Learning with the Alignment of Features and
Adjacency Matrix [8.711977569042865]
Many approaches have been proposed for graph structure learning (GSL) to jointly learn a clean graph structure and corresponding representations.
This paper proposes a novel regularized GSL approach, particularly with an alignment of feature information and graph information.
We conduct experiments on real-world graphs to evaluate the effectiveness of our approach.
arXiv Detail & Related papers (2023-07-05T09:05:14Z) - Local Augmentation for Graph Neural Networks [78.48812244668017]
We introduce the local augmentation, which enhances node features by its local subgraph structures.
Based on the local augmentation, we further design a novel framework: LA-GNN, which can apply to any GNN models in a plug-and-play manner.
arXiv Detail & Related papers (2021-09-08T18:10:08Z) - GNNAutoScale: Scalable and Expressive Graph Neural Networks via
Historical Embeddings [51.82434518719011]
GNNAutoScale (GAS) is a framework for scaling arbitrary message-passing GNNs to large graphs.
Gas prunes entire sub-trees of the computation graph by utilizing historical embeddings from prior training iterations.
Gas reaches state-of-the-art performance on large-scale graphs.
arXiv Detail & Related papers (2021-06-10T09:26:56Z) - Robust Optimization as Data Augmentation for Large-scale Graphs [117.2376815614148]
We propose FLAG (Free Large-scale Adversarial Augmentation on Graphs), which iteratively augments node features with gradient-based adversarial perturbations during training.
FLAG is a general-purpose approach for graph data, which universally works in node classification, link prediction, and graph classification tasks.
arXiv Detail & Related papers (2020-10-19T21:51:47Z) - Locality Preserving Dense Graph Convolutional Networks with Graph
Context-Aware Node Representations [19.623379678611744]
Graph convolutional networks (GCNs) have been widely used for representation learning on graph data.
In many graph classification applications, GCN-based approaches have outperformed traditional methods.
We propose a locality-preserving dense GCN with graph context-aware node representations.
arXiv Detail & Related papers (2020-10-12T02:12:27Z) - Multi-Level Graph Convolutional Network with Automatic Graph Learning
for Hyperspectral Image Classification [63.56018768401328]
We propose a Multi-level Graph Convolutional Network (GCN) with Automatic Graph Learning method (MGCN-AGL) for HSI classification.
By employing attention mechanism to characterize the importance among spatially neighboring regions, the most relevant information can be adaptively incorporated to make decisions.
Our MGCN-AGL encodes the long range dependencies among image regions based on the expressive representations that have been produced at local level.
arXiv Detail & Related papers (2020-09-19T09:26:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.