論文の概要: Enhancing AI Assisted Writing with One-Shot Implicit Negative Feedback
- arxiv url: http://arxiv.org/abs/2410.11009v1
- Date: Mon, 14 Oct 2024 18:50:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-16 14:04:36.342065
- Title: Enhancing AI Assisted Writing with One-Shot Implicit Negative Feedback
- Title(参考訳): ワンショット暗黙の負のフィードバックによるAI支援書記の強化
- Authors: Benjamin Towle, Ke Zhou,
- Abstract要約: Niftyは、テキスト生成プロセスに暗黙のフィードバックを制御的に統合するために、分類器のガイダンスを使用するアプローチである。
また,ルージュ-Lでは最大で34%,正しい意図の生成では89%,人間評価では86%の勝利率を示した。
- 参考スコア(独自算出の注目度): 6.175028561101999
- License:
- Abstract: AI-mediated communication enables users to communicate more quickly and efficiently. Various systems have been proposed such as smart reply and AI-assisted writing. Yet, the heterogeneity of the forms of inputs and architectures often renders it challenging to combine insights from user behaviour in one system to improve performance in another. In this work, we consider the case where the user does not select any of the suggested replies from a smart reply system, and how this can be used as one-shot implicit negative feedback to enhance the accuracy of an AI writing model. We introduce Nifty, an approach that uses classifier guidance to controllably integrate implicit user feedback into the text generation process. Empirically, we find up to 34% improvement in Rouge-L, 89% improvement in generating the correct intent, and an 86% win-rate according to human evaluators compared to a vanilla AI writing system on the MultiWOZ and Schema-Guided Dialog datasets.
- Abstract(参考訳): AIによるコミュニケーションにより、ユーザーはより迅速かつ効率的にコミュニケーションできる。
スマートリプライやAI支援書き込みなど,さまざまなシステムが提案されている。
しかし、入力とアーキテクチャの形の異質性は、あるシステムにおけるユーザの振る舞いからの洞察を組み合わせることで、別のシステムのパフォーマンスを改善することを難しくすることが多い。
本研究では,ユーザがスマート応答システムから提案された応答のいずれかを選択しない場合と,AI記述モデルの精度を高めるために,一括陰性フィードバックとしてどのように使用できるかを検討する。
テキスト生成プロセスに暗黙のフィードバックを制御的に統合する手法であるNiftyを導入する。
経験的には、MultiWOZおよびSchema-Guided Dialogデータセット上のバニラAI記述システムと比較して、Roge-Lの最大34%の改善、正しい意図の生成の改善89%、人間評価による勝利率86%が得られた。
関連論文リスト
- Improved Contextual Recognition In Automatic Speech Recognition Systems
By Semantic Lattice Rescoring [4.819085609772069]
本稿では,意味的格子処理によるASRシステム内における文脈認識の高度化のための新しい手法を提案する。
提案手法は,隠れマルコフモデルとガウス混合モデル(HMM-GMM)とディープニューラルネットワーク(DNN)モデルを用いて,精度を向上する。
本稿では,実験分析によるLibriSpeechデータセット上でのフレームワークの有効性を示す。
論文 参考訳(メタデータ) (2023-10-14T23:16:05Z) - UltraFeedback: Boosting Language Models with Scaled AI Feedback [99.4633351133207]
大規模で高品質で多様なAIフィードバックデータセットである textscUltraFeedback を提示する。
我々の研究は、強力なオープンソースのチャット言語モデルを構築する上で、スケールしたAIフィードバックデータの有効性を検証する。
論文 参考訳(メタデータ) (2023-10-02T17:40:01Z) - PICK: Polished & Informed Candidate Scoring for Knowledge-Grounded
Dialogue Systems [59.1250765143521]
現在の知識接地対話システムは、生成された応答を人間に好まれる品質に合わせるのに失敗することが多い。
我々は,世代別再描画フレームワークであるPolseed & Informed Candidate Scoring (PICK)を提案する。
対話履歴に関連性を維持しつつ,より忠実な応答を生成するためのPICKの有効性を示す。
論文 参考訳(メタデータ) (2023-09-19T08:27:09Z) - System-Level Natural Language Feedback [83.24259100437965]
システムレベルの設計決定を人為的なループプロセスで形式化する上で,フィードバックの活用方法を示す。
検索クエリと対話応答生成を改善するために,本手法のケーススタディを2つ実施する。
システムレベルのフィードバックとインスタンスレベルのフィードバックの組み合わせは、さらなる利益をもたらします。
論文 参考訳(メタデータ) (2023-06-23T16:21:40Z) - Self-Aware Feedback-Based Self-Learning in Large-Scale Conversational AI [8.638846754482467]
大規模な会話型AIエージェントにおける自己学習のパラダイムは、ユーザからのフィードバックを利用して、発言と意味をブリッジする傾向がある。
我々の自己認識モデルはPR-AUC全体を27.45%改善し、相対的な欠陥を最大31.22%減少させ、世界的嗜好の変化に迅速に適応できることを示した。
論文 参考訳(メタデータ) (2022-04-29T18:18:40Z) - What is wrong with you?: Leveraging User Sentiment for Automatic Dialog
Evaluation [73.03318027164605]
本稿では,次のユーザの発話から自動的に抽出できる情報をプロキシとして利用して,前のシステム応答の質を測定することを提案する。
本モデルは,実際のユーザおよび有償ユーザから収集した音声と書面の両方のオープンドメインダイアログコーパスを一般化する。
論文 参考訳(メタデータ) (2022-03-25T22:09:52Z) - User Response and Sentiment Prediction for Automatic Dialogue Evaluation [69.11124655437902]
本稿では,次のユーザ発話の感情をターンレベル評価やダイアログレベル評価に利用することを提案する。
実験により,本モデルによる音声対話データセットと音声対話データセットの両方において,既存の自動評価指標よりも優れた結果が得られた。
論文 参考訳(メタデータ) (2021-11-16T22:19:17Z) - Actionable Conversational Quality Indicators for Improving Task-Oriented
Dialog Systems [2.6094079735487994]
本稿では、ACQI(Actionable Conversational Quality Indicator)の使用について紹介し、解説する。
ACQIは、改善可能なダイアログの一部を認識し、改善する方法を推奨するために使用される。
本稿では、商用顧客サービスアプリケーションで使用されるLivePersonの内部ダイアログシステムにおけるACQIの使用の有効性を示す。
論文 参考訳(メタデータ) (2021-09-22T22:41:42Z) - Personalized Query Rewriting in Conversational AI Agents [7.086654234990377]
本稿では,ユーザの歴史的に成功したインタラクションをメモリとして活用し,クエリ書き換え手法を提案する。
ニューラルネットワークモデルとポインタジェネレータネットワークに階層的な注意を払い、上述したユーザ記憶を用いたクエリ書き換えタスクにおいて、より優れた性能を発揮することを示す。
論文 参考訳(メタデータ) (2020-11-09T20:45:39Z) - Partial Bandit and Semi-Bandit: Making the Most Out of Scarce Users'
Feedback [62.997667081978825]
本稿では,ユーザのフィードバックを考慮し,3つの戦略を用いて評価する手法を提案する。
ユーザからのフィードバックが制限されているにも関わらず(全体の20%以下)、我々の手法は最先端のアプローチと同じような結果が得られる。
論文 参考訳(メタデータ) (2020-09-16T07:32:51Z) - Large-scale Hybrid Approach for Predicting User Satisfaction with
Conversational Agents [28.668681892786264]
ユーザの満足度を測定することは難しい課題であり、大規模な会話エージェントシステムの開発において重要な要素である。
人間のアノテーションに基づくアプローチは簡単に制御できるが、スケールするのは難しい。
新たなアプローチとして,会話エージェントシステムに埋め込まれたフィードバック誘導システムを通じて,ユーザの直接的なフィードバックを収集する手法がある。
論文 参考訳(メタデータ) (2020-05-29T16:29:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。