Learning to Optimize for Mixed-Integer Non-linear Programming
- URL: http://arxiv.org/abs/2410.11061v8
- Date: Tue, 11 Feb 2025 15:59:51 GMT
- Title: Learning to Optimize for Mixed-Integer Non-linear Programming
- Authors: Bo Tang, Elias B. Khalil, Ján Drgoňa,
- Abstract summary: Mixed-integer nonlinear programs (MINLPs) arise in diverse domains such as energy systems and transportation.
MINLPs are notoriously difficult to solve, particularly on a large scale.
We propose a novel deep-learning approach with two learnable correction layers to ensure solution integrality and a post-processing step to improve solution feasibility.
- Score: 20.469394148261838
- License:
- Abstract: Mixed-integer nonlinear programs (MINLPs) arise in diverse domains such as energy systems and transportation but are notoriously difficult to solve, particularly on a large scale. While learning-to-optimize methods have been successful at continuous optimization, extending them to MINLPs is still challenging due to the integer constraints. To overcome this, we propose a novel deep-learning approach with two learnable correction layers to ensure solution integrality and a post-processing step to improve solution feasibility. Our experiments show that this is the first general method capable of efficiently solving large-scale MINLPs with up to tens of thousands of variables in milliseconds, delivering high-quality solutions even when traditional solvers and heuristics fail. This is the first general learning method for MINLP, successfully solving some of the largest instances reported to date.
Related papers
- Integrated Offline and Online Learning to Solve a Large Class of Scheduling Problems [5.36210189158563]
We develop a unified machine learning (ML) approach to predict high-quality solutions for single-machine scheduling problems.
We exploit the fact that the entire class of the problems considered can be formulated as a time-indexed formulation.
In view of the NP-hard nature of the problems, labels (i.e., optimal solutions) are hard to generate for training.
arXiv Detail & Related papers (2025-01-08T03:35:28Z) - Towards An Unsupervised Learning Scheme for Efficiently Solving Parameterized Mixed-Integer Programs [6.1860817947800655]
We train an autoencoder for binary variables in an unsupervised learning fashion.
We present a strategy to construct a class of cutting plane constraints from the decoder parameters of an offline-trained AE.
Their integration into the primal MIP problem leads to a tightened MIP with the reduced feasible region.
arXiv Detail & Related papers (2024-12-23T14:48:32Z) - RL-MILP Solver: A Reinforcement Learning Approach for Solving Mixed-Integer Linear Programs with Graph Neural Networks [3.3894236476098185]
Mixed-integer linear programming (MILP) is a widely used optimization technique across various fields.
We propose a novel reinforcement learning (RL)-based solver that not only finds the first feasible solution but also incrementally discovers better feasible solutions.
arXiv Detail & Related papers (2024-11-29T07:23:34Z) - Learning Joint Models of Prediction and Optimization [56.04498536842065]
Predict-Then-Then framework uses machine learning models to predict unknown parameters of an optimization problem from features before solving.
This paper proposes an alternative method, in which optimal solutions are learned directly from the observable features by joint predictive models.
arXiv Detail & Related papers (2024-09-07T19:52:14Z) - Learning Constrained Optimization with Deep Augmented Lagrangian Methods [54.22290715244502]
A machine learning (ML) model is trained to emulate a constrained optimization solver.
This paper proposes an alternative approach, in which the ML model is trained to predict dual solution estimates directly.
It enables an end-to-end training scheme is which the dual objective is as a loss function, and solution estimates toward primal feasibility, emulating a Dual Ascent method.
arXiv Detail & Related papers (2024-03-06T04:43:22Z) - Learning Proximal Operators to Discover Multiple Optima [66.98045013486794]
We present an end-to-end method to learn the proximal operator across non-family problems.
We show that for weakly-ized objectives and under mild conditions, the method converges globally.
arXiv Detail & Related papers (2022-01-28T05:53:28Z) - A Bi-Level Framework for Learning to Solve Combinatorial Optimization on
Graphs [91.07247251502564]
We propose a hybrid approach to combine the best of the two worlds, in which a bi-level framework is developed with an upper-level learning method to optimize the graph.
Such a bi-level approach simplifies the learning on the original hard CO and can effectively mitigate the demand for model capacity.
arXiv Detail & Related papers (2021-06-09T09:18:18Z) - A Two-stage Framework and Reinforcement Learning-based Optimization
Algorithms for Complex Scheduling Problems [54.61091936472494]
We develop a two-stage framework, in which reinforcement learning (RL) and traditional operations research (OR) algorithms are combined together.
The scheduling problem is solved in two stages, including a finite Markov decision process (MDP) and a mixed-integer programming process, respectively.
Results show that the proposed algorithms could stably and efficiently obtain satisfactory scheduling schemes for agile Earth observation satellite scheduling problems.
arXiv Detail & Related papers (2021-03-10T03:16:12Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
Security-constrained optimal power flow (SCOPF) is fundamental in power systems.
Modeling of APR within the SCOPF problem results in complex large-scale mixed-integer programs.
This paper proposes a novel approach that combines deep learning and robust optimization techniques.
arXiv Detail & Related papers (2020-07-14T12:38:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.