論文の概要: JOOCI: a Framework for Learning Comprehensive Speech Representations
- arxiv url: http://arxiv.org/abs/2410.11086v3
- Date: Tue, 18 Feb 2025 10:09:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-19 14:03:30.346076
- Title: JOOCI: a Framework for Learning Comprehensive Speech Representations
- Title(参考訳): JOOCI: 包括的音声表現学習フレームワーク
- Authors: Hemant Yadav, Rajiv Ratn Shah, Sunayana Sitaram,
- Abstract要約: JOOCIは、どちらの情報にも表現深度を損なうことのない、新しい音声表現学習法である。
JOOCIは、2つの話者認識と2つの言語タスクで評価された場合、WavLMの26.5%、および同様のサイズのモデル(100Mパラメータ)を上回っている。
- 参考スコア(独自算出の注目度): 43.479279052047985
- License:
- Abstract: Information in speech can be categorized into two groups: Content (what is being said, such as linguistics) and Other (how it is expressed such as information about speaker and paralinguistic features). Current self-supervised learning (SSL) methods are shown to divide the model's representational-depth or layers in two, with earlier layers specializing in Other and later layers in Content related tasks. This layer-wise division is inherently sub-optimal, as neither information type can use all layers to build hierarchical representations. To address this, we propose JOOCI, a novel speech representation learning method that does not compromise on the representational-depth for either information type. JOOCI outperforms WavLM by 26.5%, and other models of similar size (100M parameters), when evaluated on two speaker recognition and two language tasks from the SUPERB benchmark, demonstrating its effectiveness in Jointly Optimizing Other and Content Information (JOOCI).
- Abstract(参考訳): 言論における情報は、内容(言語学など)と他(話者情報やパラ言語的特徴など)の2つのグループに分類される。
現在の自己教師付き学習(SSL)メソッドは、モデルの表現深度または層を2つに分割することを示し、それ以前のレイヤはコンテンツ関連タスクの他層と後層に特化している。
この階層的な分割は本質的には準最適であり、情報型が階層的な表現を構築するためにすべてのレイヤを使用することはできない。
そこで本稿では,JOOCIを提案する。JOOCIは,どちらの情報にも表現深度を損なうことのない,新しい音声表現学習手法である。
JOOCIは、2つの話者認識と2つの言語タスクをSUPERBベンチマークで評価し、その効果をJOOCI(Jointly Optimizing Other and Content Information)で示している。
関連論文リスト
- What Do Self-Supervised Speech and Speaker Models Learn? New Findings
From a Cross Model Layer-Wise Analysis [44.93152068353389]
自己教師付き学習(SSL)は、意味のある音声表現を学習するために注目を集めている。
話者SSLモデルは、主に話者表現のための発話レベルの訓練目標を採用する。
論文 参考訳(メタデータ) (2024-01-31T07:23:22Z) - SSHR: Leveraging Self-supervised Hierarchical Representations for Multilingual Automatic Speech Recognition [9.853451215277346]
自己教師付き階層表現(SSHR)を利用してMMSモデルを微調整する新しい手法を提案する。
我々は,2つの多言語データセットであるCommon VoiceとML-SUPERBについてSSHRを評価し,その実験結果から,本手法が最先端の性能を実現することを示す。
論文 参考訳(メタデータ) (2023-09-29T02:35:36Z) - Learning Speech Representation From Contrastive Token-Acoustic
Pretraining [57.08426714676043]
本研究では、2つのエンコーダを用いて音素と音声を複数モーダル空間に導入するCTAP(Contrastive Token-Acoustic Pretraining)を提案する。
提案したCTAPモデルは、210k音声と音素ペアで訓練され、最小教師付きTS、VC、ASRを実現する。
論文 参考訳(メタデータ) (2023-09-01T12:35:43Z) - Representation Learning With Hidden Unit Clustering For Low Resource
Speech Applications [37.89857769906568]
本稿では,隠れ単位クラスタリング(HUC)フレームワークを用いた生音声からの自己教師付き表現学習のアプローチについて述べる。
モデルへの入力は、ウィンドウ化され、1次元畳み込み層で処理されるオーディオサンプルで構成されている。
HUCフレームワークは、表現を少数の音素のような単位に分類することができ、意味的に豊かな表現を学ぶためのモデルを訓練するために使用される。
論文 参考訳(メタデータ) (2023-07-14T13:02:10Z) - InfoCSE: Information-aggregated Contrastive Learning of Sentence
Embeddings [61.77760317554826]
本稿では,教師なし文の埋め込みを学習するための情報型コントラスト学習フレームワーク InfoCSE を提案する。
提案したInfoCSEを,セマンティックテキスト類似性(STS)タスクを用いて,いくつかのベンチマークデータセット上で評価する。
実験の結果, InfoCSE は BERT ベースでは2.60%, BERT 大規模では1.77% でSimCSE より優れていた。
論文 参考訳(メタデータ) (2022-10-08T15:53:19Z) - Self-Supervised Learning for speech recognition with Intermediate layer
supervision [52.93758711230248]
自己教師付き学習(ILS-SSL)のための中間層スーパービジョンを提案する。
ILS-SSLは、中間層にSSL損失を追加することで、可能な限りコンテンツ情報に集中させます。
LibriSpeech の他のテストセットの実験により,本手法は HuBERT を著しく上回っていることがわかった。
論文 参考訳(メタデータ) (2021-12-16T10:45:05Z) - UniSpeech-SAT: Universal Speech Representation Learning with Speaker
Aware Pre-Training [72.004873454347]
教師なし話者情報抽出の2つの手法が導入された。
SUPERBベンチマークによる実験結果から,提案方式は最先端の性能を実現することが示された。
トレーニングデータセットを94万時間公開オーディオデータにスケールアップし、さらなるパフォーマンス向上を実現しています。
論文 参考訳(メタデータ) (2021-10-12T05:43:30Z) - SPLAT: Speech-Language Joint Pre-Training for Spoken Language
Understanding [61.02342238771685]
音声理解には、入力音響信号を解析してその言語内容を理解し、予測するモデルが必要である。
大規模無注釈音声やテキストからリッチな表現を学習するために,様々な事前学習手法が提案されている。
音声と言語モジュールを協調的に事前学習するための,新しい半教師付き学習フレームワークであるSPLATを提案する。
論文 参考訳(メタデータ) (2020-10-05T19:29:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。