A Two-Stage Federated Learning Approach for Industrial Prognostics Using Large-Scale High-Dimensional Signals
- URL: http://arxiv.org/abs/2410.11101v1
- Date: Mon, 14 Oct 2024 21:26:22 GMT
- Title: A Two-Stage Federated Learning Approach for Industrial Prognostics Using Large-Scale High-Dimensional Signals
- Authors: Yuqi Su, Xiaolei Fang,
- Abstract summary: Industrial prognostics aims to develop data-driven methods that leverage high-dimensional degradation signals from assets to predict their failure times.
In practice, individual organizations often lack sufficient data to independently train reliable prognostic models.
This article proposes a statistical learning-based federated model that enables multiple organizations to jointly train a prognostic model.
- Score: 1.2277343096128712
- License:
- Abstract: Industrial prognostics aims to develop data-driven methods that leverage high-dimensional degradation signals from assets to predict their failure times. The success of these models largely depends on the availability of substantial historical data for training. However, in practice, individual organizations often lack sufficient data to independently train reliable prognostic models, and privacy concerns prevent data sharing between organizations for collaborative model training. To overcome these challenges, this article proposes a statistical learning-based federated model that enables multiple organizations to jointly train a prognostic model while keeping their data local and secure. The proposed approach involves two key stages: federated dimension reduction and federated (log)-location-scale regression. In the first stage, we develop a federated randomized singular value decomposition algorithm for multivariate functional principal component analysis, which efficiently reduces the dimensionality of degradation signals while maintaining data privacy. The second stage proposes a federated parameter estimation algorithm for (log)-location-scale regression, allowing organizations to collaboratively estimate failure time distributions without sharing raw data. The proposed approach addresses the limitations of existing federated prognostic methods by using statistical learning techniques that perform well with smaller datasets and provide comprehensive failure time distributions. The effectiveness and practicality of the proposed model are validated using simulated data and a dataset from the NASA repository.
Related papers
- PeFAD: A Parameter-Efficient Federated Framework for Time Series Anomaly Detection [51.20479454379662]
We propose a.
Federated Anomaly Detection framework named PeFAD with the increasing privacy concerns.
We conduct extensive evaluations on four real datasets, where PeFAD outperforms existing state-of-the-art baselines by up to 28.74%.
arXiv Detail & Related papers (2024-06-04T13:51:08Z) - DAGnosis: Localized Identification of Data Inconsistencies using
Structures [73.39285449012255]
Identification and appropriate handling of inconsistencies in data at deployment time is crucial to reliably use machine learning models.
We use directed acyclic graphs (DAGs) to encode the training set's features probability distribution and independencies as a structure.
Our method, called DAGnosis, leverages these structural interactions to bring valuable and insightful data-centric conclusions.
arXiv Detail & Related papers (2024-02-26T11:29:16Z) - Federated Learning with Projected Trajectory Regularization [65.6266768678291]
Federated learning enables joint training of machine learning models from distributed clients without sharing their local data.
One key challenge in federated learning is to handle non-identically distributed data across the clients.
We propose a novel federated learning framework with projected trajectory regularization (FedPTR) for tackling the data issue.
arXiv Detail & Related papers (2023-12-22T02:12:08Z) - A Federated Data Fusion-Based Prognostic Model for Applications with Multi-Stream Incomplete Signals [1.2277343096128712]
This article proposes a federated prognostic model that allows multiple users to jointly construct a failure time prediction model.
Numerical studies indicate that the performance of the proposed model is the same as that of classic non-federated prognostic models.
arXiv Detail & Related papers (2023-11-13T17:08:34Z) - Tackling Computational Heterogeneity in FL: A Few Theoretical Insights [68.8204255655161]
We introduce and analyse a novel aggregation framework that allows for formalizing and tackling computational heterogeneous data.
Proposed aggregation algorithms are extensively analyzed from a theoretical, and an experimental prospective.
arXiv Detail & Related papers (2023-07-12T16:28:21Z) - DRFLM: Distributionally Robust Federated Learning with Inter-client
Noise via Local Mixup [58.894901088797376]
federated learning has emerged as a promising approach for training a global model using data from multiple organizations without leaking their raw data.
We propose a general framework to solve the above two challenges simultaneously.
We provide comprehensive theoretical analysis including robustness analysis, convergence analysis, and generalization ability.
arXiv Detail & Related papers (2022-04-16T08:08:29Z) - Privacy-preserving Logistic Regression with Secret Sharing [0.0]
We propose secret sharing-based privacy-preserving logistic regression protocols using the Newton-Raphson method.
Our implementation results show that our improved method can handle large datasets used in securely training a logistic regression from multiple sources.
arXiv Detail & Related papers (2021-05-14T14:53:50Z) - Learning while Respecting Privacy and Robustness to Distributional
Uncertainties and Adversarial Data [66.78671826743884]
The distributionally robust optimization framework is considered for training a parametric model.
The objective is to endow the trained model with robustness against adversarially manipulated input data.
Proposed algorithms offer robustness with little overhead.
arXiv Detail & Related papers (2020-07-07T18:25:25Z) - Stratified cross-validation for unbiased and privacy-preserving
federated learning [0.0]
We focus on the recurrent problem of duplicated records that, if not handled properly, may cause over-optimistic estimations of a model's performances.
We introduce and discuss stratified cross-validation, a validation methodology that leverages stratification techniques to prevent data leakage in federated learning settings.
arXiv Detail & Related papers (2020-01-22T15:49:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.