論文の概要: Emulators for stellar profiles in binary population modeling
- arxiv url: http://arxiv.org/abs/2410.11105v1
- Date: Mon, 14 Oct 2024 21:33:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-16 14:00:26.013224
- Title: Emulators for stellar profiles in binary population modeling
- Title(参考訳): 二元集団モデリングにおける恒星プロファイルのエミュレータ
- Authors: Elizabeth Teng, Ugur Demir, Zoheyr Doctor, Philipp M. Srivastava, Shamal Lalvani, Vicky Kalogera, Aggelos Katsaggelos, Jeff J. Andrews, Simone S. Bavera, Max M. Briel, Seth Gossage, Konstantinos Kovlakas, Matthias U. Kruckow, Kyle Akira Rocha, Meng Sun, Zepei Xing, Emmanouil Zapartas,
- Abstract要約: 本稿では,放射軸に沿った内部恒星構造を機械学習技術を用いて予測するための新しいエミュレーション手法を提案する。
メモリとストレージの効率の面では, 近接近似に匹敵する精度が期待できる。
- 参考スコア(独自算出の注目度): 0.5430323214461458
- License:
- Abstract: Knowledge about the internal physical structure of stars is crucial to understanding their evolution. The novel binary population synthesis code POSYDON includes a module for interpolating the stellar and binary properties of any system at the end of binary MESA evolution based on a pre-computed set of models. In this work, we present a new emulation method for predicting stellar profiles, i.e., the internal stellar structure along the radial axis, using machine learning techniques. We use principal component analysis for dimensionality reduction and fully-connected feed-forward neural networks for making predictions. We find accuracy to be comparable to that of nearest neighbor approximation, with a strong advantage in terms of memory and storage efficiency. By delivering more information about the evolution of stellar internal structure, these emulators will enable faster simulations of higher physical fidelity with large-scale simulations of binary star population synthesis possible with POSYDON and other population synthesis codes.
- Abstract(参考訳): 恒星の内部構造に関する知識は、その進化を理解するために不可欠である。
新規なバイナリ集団合成コードPOSYDONは、事前計算されたモデルのセットに基づいてバイナリMESA進化の終了時に、任意のシステムの星およびバイナリ特性を補間するモジュールを含む。
本研究では,放射軸に沿った内部恒星構造を機械学習技術を用いて予測するための新しいエミュレーション手法を提案する。
主成分分析を次元減少と完全連結フィードフォワードニューラルネットワークに応用して予測を行う。
メモリとストレージの効率の面では, 近接近似に匹敵する精度が期待できる。
恒星の内部構造の進化に関するさらなる情報を提供することで、これらのエミュレータはPOSYDONや他の集団合成符号で可能な2元星の集団合成の大規模シミュレーションにより、より高い物理密度のより高速なシミュレーションを可能にする。
関連論文リスト
- CHARM: Creating Halos with Auto-Regressive Multi-stage networks [1.6987257996124416]
CHARMは、モックハローカタログを作成するための新しい方法である。
モックハローカタログと塗装された銀河カタログは、実空間と赤方偏移空間の両方でN$ボディシミュレーションから得られたのと同じ統計特性を持つことを示す。
論文 参考訳(メタデータ) (2024-09-13T18:00:06Z) - Predicting large scale cosmological structure evolution with GAN-based
autoencoders [0.0]
我々は,GANをベースとしたオートエンコーダ(AE)を用いて,シミュレーション中の構造進化を予測する。
AEsは、DM場の2次元シミュレーションにおける構造進化を予測できるが、密度場のみを入力として、同様の条件下での3次元シミュレーションでは、はるかに低性能であることがわかった。
論文 参考訳(メタデータ) (2024-03-04T16:17:43Z) - Assessing Neural Network Representations During Training Using
Noise-Resilient Diffusion Spectral Entropy [55.014926694758195]
ニューラルネットワークにおけるエントロピーと相互情報は、学習プロセスに関する豊富な情報を提供する。
データ幾何を利用して基礎となる多様体にアクセスし、これらの情報理論測度を確実に計算する。
本研究は,高次元シミュレーションデータにおける固有次元と関係強度の耐雑音性の測定結果である。
論文 参考訳(メタデータ) (2023-12-04T01:32:42Z) - Towards Complex Dynamic Physics System Simulation with Graph Neural ODEs [75.7104463046767]
本稿では,粒子系の空間的および時間的依存性を特徴付ける新しい学習ベースシミュレーションモデルを提案する。
我々は,GNSTODEのシミュレーション性能を,重力とクーロンの2つの実世界の粒子系上で実証的に評価した。
論文 参考訳(メタデータ) (2023-05-21T03:51:03Z) - Field Level Neural Network Emulator for Cosmological N-body Simulations [7.051595217991437]
非線形状態において高精度な宇宙構造形成のためのフィールドレベルエミュレータを構築した。
我々は、2つの畳み込みニューラルネットワークを用いて、N体シミュレーション粒子の非線形変位と速度を出力する。
論文 参考訳(メタデータ) (2022-06-09T16:21:57Z) - Active Learning for Computationally Efficient Distribution of Binary
Evolution Simulations [0.19359975080269876]
我々は,データ収集プロセスにおける機械学習を用いて,対象とするシミュレーションを適応的かつ反復的に選択する,新しい能動的学習アルゴリズムであるpsy-crisを提案する。
おもちゃの問題に対してpsy-crisを試験し、その結果のトレーニングセットが正規またはランダムにサンプリングされたグリッドよりも正確な分類と回帰のシミュレーションを少なくする必要があることを発見した。
論文 参考訳(メタデータ) (2022-03-30T21:36:32Z) - Neural-Network Quantum States for Periodic Systems in Continuous Space [66.03977113919439]
我々は、周期性の存在下での強い相互作用を持つシステムのシミュレーションのために、神経量子状態の族を紹介する。
一次元系では、基底状態エネルギーと粒子の放射分布関数を非常に正確に推定する。
二つの次元において基底状態エネルギーの優れた推定値を得るが、これはより伝統的な手法から得られる結果に匹敵する。
論文 参考訳(メタデータ) (2021-12-22T15:27:30Z) - Fast and Accurate Non-Linear Predictions of Universes with Deep Learning [21.218297581239664]
我々は、高速線形予測を数値シミュレーションから完全に非線形な予測に変換するV-Netベースのモデルを構築した。
我々のNNモデルはシミュレーションを小さなスケールにエミュレートすることを学び、現在の最先端の近似手法よりも高速かつ高精度である。
論文 参考訳(メタデータ) (2020-12-01T03:30:37Z) - Hyperbolic Neural Networks++ [66.16106727715061]
ニューラルネットワークの基本成分を1つの双曲幾何モデル、すなわちポアンカーの球モデルで一般化する。
実験により, 従来の双曲成分と比較してパラメータ効率が優れ, ユークリッド成分よりも安定性と性能が優れていた。
論文 参考訳(メタデータ) (2020-06-15T08:23:20Z) - Graph Neural Network for Hamiltonian-Based Material Property Prediction [56.94118357003096]
無機材料のバンドギャップを予測できるいくつかの異なるグラフ畳み込みネットワークを提示し、比較する。
モデルは、それぞれの軌道自体の情報と相互の相互作用の2つの異なる特徴を組み込むように開発されている。
その結果,クロスバリデーションにより予測精度が期待できることがわかった。
論文 参考訳(メタデータ) (2020-05-27T13:32:10Z) - Binarizing MobileNet via Evolution-based Searching [66.94247681870125]
そこで本稿では,MobileNet をバイナライズする際の構築と訓練を容易にするための進化的探索手法を提案する。
ワンショットアーキテクチャ検索フレームワークに着想を得て、グループ畳み込みのアイデアを操り、効率的な1ビット畳み込みニューラルネットワーク(CNN)を設計する。
我々の目標は、グループ畳み込みの最良の候補を探索することで、小さなが効率的なバイナリニューラルアーキテクチャを考案することである。
論文 参考訳(メタデータ) (2020-05-13T13:25:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。