論文の概要: Emulators for stellar profiles in binary population modeling
- arxiv url: http://arxiv.org/abs/2410.11105v1
- Date: Mon, 14 Oct 2024 21:33:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-16 14:00:26.013224
- Title: Emulators for stellar profiles in binary population modeling
- Title(参考訳): 二元集団モデリングにおける恒星プロファイルのエミュレータ
- Authors: Elizabeth Teng, Ugur Demir, Zoheyr Doctor, Philipp M. Srivastava, Shamal Lalvani, Vicky Kalogera, Aggelos Katsaggelos, Jeff J. Andrews, Simone S. Bavera, Max M. Briel, Seth Gossage, Konstantinos Kovlakas, Matthias U. Kruckow, Kyle Akira Rocha, Meng Sun, Zepei Xing, Emmanouil Zapartas,
- Abstract要約: 本稿では,放射軸に沿った内部恒星構造を機械学習技術を用いて予測するための新しいエミュレーション手法を提案する。
メモリとストレージの効率の面では, 近接近似に匹敵する精度が期待できる。
- 参考スコア(独自算出の注目度): 0.5430323214461458
- License:
- Abstract: Knowledge about the internal physical structure of stars is crucial to understanding their evolution. The novel binary population synthesis code POSYDON includes a module for interpolating the stellar and binary properties of any system at the end of binary MESA evolution based on a pre-computed set of models. In this work, we present a new emulation method for predicting stellar profiles, i.e., the internal stellar structure along the radial axis, using machine learning techniques. We use principal component analysis for dimensionality reduction and fully-connected feed-forward neural networks for making predictions. We find accuracy to be comparable to that of nearest neighbor approximation, with a strong advantage in terms of memory and storage efficiency. By delivering more information about the evolution of stellar internal structure, these emulators will enable faster simulations of higher physical fidelity with large-scale simulations of binary star population synthesis possible with POSYDON and other population synthesis codes.
- Abstract(参考訳): 恒星の内部構造に関する知識は、その進化を理解するために不可欠である。
新規なバイナリ集団合成コードPOSYDONは、事前計算されたモデルのセットに基づいてバイナリMESA進化の終了時に、任意のシステムの星およびバイナリ特性を補間するモジュールを含む。
本研究では,放射軸に沿った内部恒星構造を機械学習技術を用いて予測するための新しいエミュレーション手法を提案する。
主成分分析を次元減少と完全連結フィードフォワードニューラルネットワークに応用して予測を行う。
メモリとストレージの効率の面では, 近接近似に匹敵する精度が期待できる。
恒星の内部構造の進化に関するさらなる情報を提供することで、これらのエミュレータはPOSYDONや他の集団合成符号で可能な2元星の集団合成の大規模シミュレーションにより、より高い物理密度のより高速なシミュレーションを可能にする。
関連論文リスト
- STAR: Synthesis of Tailored Architectures [61.080157488857516]
本稿では, 適合型アーキテクチャ (STAR) の新規な合成手法を提案する。
提案手法は線形入力可変系の理論に基づく新しい探索空間を結合し,階層的な数値エンコーディングをアーキテクチャゲノムに支持する。STARゲノムは,複数のモデル品質と効率の指標に最適化するために,勾配のない進化的アルゴリズムで自動的に精製・組換えされる。
STARを用いて、多種多様な計算単位と相互接続パターンを活用し、品質、パラメータサイズ、および自動回帰言語モデリングのための推論キャッシュのフロンティアにおける高度に最適化されたトランスフォーマーとストライプハイブリッドモデルを改善する。
論文 参考訳(メタデータ) (2024-11-26T18:42:42Z) - Automatically Learning Hybrid Digital Twins of Dynamical Systems [56.69628749813084]
Digital Twins (DT)は、現実世界のシステムの状態と時間力学をシミュレートする。
DTは、しばしばデータスカース設定で目に見えない条件に一般化するのに苦労します。
本稿では,HDTwinsを自律的に提案し,評価し,最適化するための進化的アルゴリズム(textbfHDTwinGen$)を提案する。
論文 参考訳(メタデータ) (2024-10-31T07:28:22Z) - Spherinator and HiPSter: Representation Learning for Unbiased Knowledge Discovery from Simulations [0.0]
我々は、幅広いシミュレーションから有用な科学的洞察を得るための、新しい、偏見のない、機械学習に基づくアプローチについて説明する。
我々の概念は、低次元空間におけるデータのコンパクトな表現を学習するために非線形次元削減を適用することに基づいている。
本稿では、回転不変な超球面変動畳み込み自己エンコーダを用いて、潜時空間の電力分布を利用して、IllustrisTNGシミュレーションから銀河を訓練したプロトタイプを提案する。
論文 参考訳(メタデータ) (2024-06-06T07:34:58Z) - O-type Stars Stellar Parameter Estimation Using Recurrent Neural
Networks [0.0]
これまでの研究では、恒星モデルに適合する信頼性の高い方法を確立するために、機械学習とディープラーニングのアルゴリズムのセットを比較した。
本稿では,ニューラルネットワークの観点から,個々の物理パラメータを推定する方法について述べる。
3つの異なるリカレントニューラルネットワークシステムの開発、恒星スペクトルモデルを用いたトレーニングプロセス、9つの異なる観測された恒星スペクトルに対するテスト、および過去の研究における推定との比較について述べる。
論文 参考訳(メタデータ) (2022-10-23T17:18:52Z) - Field Level Neural Network Emulator for Cosmological N-body Simulations [7.051595217991437]
非線形状態において高精度な宇宙構造形成のためのフィールドレベルエミュレータを構築した。
我々は、2つの畳み込みニューラルネットワークを用いて、N体シミュレーション粒子の非線形変位と速度を出力する。
論文 参考訳(メタデータ) (2022-06-09T16:21:57Z) - Active Learning for Computationally Efficient Distribution of Binary
Evolution Simulations [0.19359975080269876]
我々は,データ収集プロセスにおける機械学習を用いて,対象とするシミュレーションを適応的かつ反復的に選択する,新しい能動的学習アルゴリズムであるpsy-crisを提案する。
おもちゃの問題に対してpsy-crisを試験し、その結果のトレーニングセットが正規またはランダムにサンプリングされたグリッドよりも正確な分類と回帰のシミュレーションを少なくする必要があることを発見した。
論文 参考訳(メタデータ) (2022-03-30T21:36:32Z) - CSformer: Bridging Convolution and Transformer for Compressive Sensing [65.22377493627687]
本稿では,CNNからの詳細な空間情報を活用するためのハイブリッドフレームワークと,表現学習の強化を目的としたトランスフォーマーが提供するグローバルコンテキストを統合することを提案する。
提案手法は、適応的なサンプリングとリカバリからなるエンドツーエンドの圧縮画像センシング手法である。
実験により, 圧縮センシングにおける専用トランスアーキテクチャの有効性が示された。
論文 参考訳(メタデータ) (2021-12-31T04:37:11Z) - Neural-Network Quantum States for Periodic Systems in Continuous Space [66.03977113919439]
我々は、周期性の存在下での強い相互作用を持つシステムのシミュレーションのために、神経量子状態の族を紹介する。
一次元系では、基底状態エネルギーと粒子の放射分布関数を非常に正確に推定する。
二つの次元において基底状態エネルギーの優れた推定値を得るが、これはより伝統的な手法から得られる結果に匹敵する。
論文 参考訳(メタデータ) (2021-12-22T15:27:30Z) - Fast and Accurate Non-Linear Predictions of Universes with Deep Learning [21.218297581239664]
我々は、高速線形予測を数値シミュレーションから完全に非線形な予測に変換するV-Netベースのモデルを構築した。
我々のNNモデルはシミュレーションを小さなスケールにエミュレートすることを学び、現在の最先端の近似手法よりも高速かつ高精度である。
論文 参考訳(メタデータ) (2020-12-01T03:30:37Z) - Hyperbolic Neural Networks++ [66.16106727715061]
ニューラルネットワークの基本成分を1つの双曲幾何モデル、すなわちポアンカーの球モデルで一般化する。
実験により, 従来の双曲成分と比較してパラメータ効率が優れ, ユークリッド成分よりも安定性と性能が優れていた。
論文 参考訳(メタデータ) (2020-06-15T08:23:20Z) - Binarizing MobileNet via Evolution-based Searching [66.94247681870125]
そこで本稿では,MobileNet をバイナライズする際の構築と訓練を容易にするための進化的探索手法を提案する。
ワンショットアーキテクチャ検索フレームワークに着想を得て、グループ畳み込みのアイデアを操り、効率的な1ビット畳み込みニューラルネットワーク(CNN)を設計する。
我々の目標は、グループ畳み込みの最良の候補を探索することで、小さなが効率的なバイナリニューラルアーキテクチャを考案することである。
論文 参考訳(メタデータ) (2020-05-13T13:25:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。