Emulators for stellar profiles in binary population modeling
- URL: http://arxiv.org/abs/2410.11105v2
- Date: Tue, 11 Feb 2025 20:18:12 GMT
- Title: Emulators for stellar profiles in binary population modeling
- Authors: Elizabeth Teng, Ugur Demir, Zoheyr Doctor, Philipp M. Srivastava, Shamal Lalvani, Vicky Kalogera, Aggelos Katsaggelos, Jeff J. Andrews, Simone S. Bavera, Max M. Briel, Seth Gossage, Konstantinos Kovlakas, Matthias U. Kruckow, Kyle Akira Rocha, Meng Sun, Zepei Xing, Emmanouil Zapartas,
- Abstract summary: In this work, we present a new emulation method for predicting stellar profiles, i.e., the internal stellar structure along the radial axis.<n>We use principal component analysis for dimensionality reduction and fully-connected feed-forward neural networks for making predictions.<n>We find accuracy to be comparable to that of nearest neighbor approximation, with a strong advantage in terms of memory and storage efficiency.
- Score: 0.5430323214461458
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Knowledge about the internal physical structure of stars is crucial to understanding their evolution. The novel binary population synthesis code POSYDON includes a module for interpolating the stellar and binary properties of any system at the end of binary MESA evolution based on a pre-computed set of models. In this work, we present a new emulation method for predicting stellar profiles, i.e., the internal stellar structure along the radial axis, using machine learning techniques. We use principal component analysis for dimensionality reduction and fully-connected feed-forward neural networks for making predictions. We find accuracy to be comparable to that of nearest neighbor approximation, with a strong advantage in terms of memory and storage efficiency. By providing a versatile framework for modeling stellar internal structure, the emulation method presented here will enable faster simulations of higher physical fidelity, offering a foundation for a wide range of large-scale population studies of stellar and binary evolution.
Related papers
- Scaling Laws for Emulation of Stellar Spectra [0.0]
We provide training guidelines for scaling Transformer-based spectral emulators to achieve optimal performance.
Our results suggest that optimal computational resource allocation requires balanced scaling.
This study establishes a foundation for developing spectral foundational models with enhanced domain transfer capabilities.
arXiv Detail & Related papers (2025-03-24T12:20:24Z) - Teaching Artificial Intelligence to Perform Rapid, Resolution-Invariant Grain Growth Modeling via Fourier Neural Operator [0.0]
Microstructural evolution plays a critical role in shaping the physical, optical, and electronic properties of materials.
Traditional phase-field modeling accurately simulates these phenomena but is computationally intensive.
This study introduces a novel approach utilizing Fourier Neural Operator (FNO) to achieve resolution-invariant modeling.
arXiv Detail & Related papers (2025-03-18T11:19:08Z) - GENERator: A Long-Context Generative Genomic Foundation Model [66.46537421135996]
We present GENERator, a generative genomic foundation model featuring a context length of 98k base pairs (bp) and 1.2B parameters.
Trained on an expansive dataset comprising 386B bp of DNA, the GENERator demonstrates state-of-the-art performance across both established and newly proposed benchmarks.
It also shows significant promise in sequence optimization, particularly through the prompt-responsive generation of enhancer sequences with specific activity profiles.
arXiv Detail & Related papers (2025-02-11T05:39:49Z) - STAR: Synthesis of Tailored Architectures [61.080157488857516]
We propose a new approach for the synthesis of tailored architectures (STAR)
Our approach combines a novel search space based on the theory of linear input-varying systems, supporting a hierarchical numerical encoding into architecture genomes. STAR genomes are automatically refined and recombined with gradient-free, evolutionary algorithms to optimize for multiple model quality and efficiency metrics.
Using STAR, we optimize large populations of new architectures, leveraging diverse computational units and interconnection patterns, improving over highly-optimized Transformers and striped hybrid models on the frontier of quality, parameter size, and inference cache for autoregressive language modeling.
arXiv Detail & Related papers (2024-11-26T18:42:42Z) - Automatically Learning Hybrid Digital Twins of Dynamical Systems [56.69628749813084]
Digital Twins (DTs) simulate the states and temporal dynamics of real-world systems.
DTs often struggle to generalize to unseen conditions in data-scarce settings.
In this paper, we propose an evolutionary algorithm ($textbfHDTwinGen$) to autonomously propose, evaluate, and optimize HDTwins.
arXiv Detail & Related papers (2024-10-31T07:28:22Z) - CHARM: Creating Halos with Auto-Regressive Multi-stage networks [1.6987257996124416]
CHARM is a novel method for creating mock halo catalogs.
We show that the mock halo catalogs and painted galaxy catalogs have the same statistical properties as obtained from $N$-body simulations in both real space and redshift space.
arXiv Detail & Related papers (2024-09-13T18:00:06Z) - Predicting large scale cosmological structure evolution with GAN-based
autoencoders [0.0]
We make use of GAN-based Autoencoders (AEs) in an attempt to predict structure evolution within simulations.
We find that while the AEs can predict structure evolution for 2D simulations of DM fields well, using only the density fields as input, they perform significantly more poorly in similar conditions for 3D simulations.
arXiv Detail & Related papers (2024-03-04T16:17:43Z) - Assessing Neural Network Representations During Training Using
Noise-Resilient Diffusion Spectral Entropy [55.014926694758195]
Entropy and mutual information in neural networks provide rich information on the learning process.
We leverage data geometry to access the underlying manifold and reliably compute these information-theoretic measures.
We show that they form noise-resistant measures of intrinsic dimensionality and relationship strength in high-dimensional simulated data.
arXiv Detail & Related papers (2023-12-04T01:32:42Z) - Towards Complex Dynamic Physics System Simulation with Graph Neural ODEs [75.7104463046767]
This paper proposes a novel learning based simulation model that characterizes the varying spatial and temporal dependencies in particle systems.
We empirically evaluate GNSTODE's simulation performance on two real-world particle systems, Gravity and Coulomb.
arXiv Detail & Related papers (2023-05-21T03:51:03Z) - Field Level Neural Network Emulator for Cosmological N-body Simulations [7.051595217991437]
We build a field level emulator for cosmic structure formation that is accurate in the nonlinear regime.
We use two convolutional neural networks trained to output the nonlinear displacements and velocities of N-body simulation particles.
arXiv Detail & Related papers (2022-06-09T16:21:57Z) - Active Learning for Computationally Efficient Distribution of Binary
Evolution Simulations [0.19359975080269876]
We present a new active learning algorithm, psy-cris, which uses machine learning in the data-gathering process to adaptively and iteratively select targeted simulations to run.
We test psy-cris on a toy problem and find the resulting training sets require fewer simulations for accurate classification and regression than either regular or randomly sampled grids.
arXiv Detail & Related papers (2022-03-30T21:36:32Z) - CSformer: Bridging Convolution and Transformer for Compressive Sensing [65.22377493627687]
This paper proposes a hybrid framework that integrates the advantages of leveraging detailed spatial information from CNN and the global context provided by transformer for enhanced representation learning.
The proposed approach is an end-to-end compressive image sensing method, composed of adaptive sampling and recovery.
The experimental results demonstrate the effectiveness of the dedicated transformer-based architecture for compressive sensing.
arXiv Detail & Related papers (2021-12-31T04:37:11Z) - Neural-Network Quantum States for Periodic Systems in Continuous Space [66.03977113919439]
We introduce a family of neural quantum states for the simulation of strongly interacting systems in the presence of periodicity.
For one-dimensional systems we find very precise estimations of the ground-state energies and the radial distribution functions of the particles.
In two dimensions we obtain good estimations of the ground-state energies, comparable to results obtained from more conventional methods.
arXiv Detail & Related papers (2021-12-22T15:27:30Z) - Fast and Accurate Non-Linear Predictions of Universes with Deep Learning [21.218297581239664]
We build a V-Net based model that transforms fast linear predictions into fully nonlinear predictions from numerical simulations.
Our NN model learns to emulate the simulations down to small scales and is both faster and more accurate than the current state-of-the-art approximate methods.
arXiv Detail & Related papers (2020-12-01T03:30:37Z) - Hyperbolic Neural Networks++ [66.16106727715061]
We generalize the fundamental components of neural networks in a single hyperbolic geometry model, namely, the Poincar'e ball model.
Experiments show the superior parameter efficiency of our methods compared to conventional hyperbolic components, and stability and outperformance over their Euclidean counterparts.
arXiv Detail & Related papers (2020-06-15T08:23:20Z) - Graph Neural Network for Hamiltonian-Based Material Property Prediction [56.94118357003096]
We present and compare several different graph convolution networks that are able to predict the band gap for inorganic materials.
The models are developed to incorporate two different features: the information of each orbital itself and the interaction between each other.
The results show that our model can get a promising prediction accuracy with cross-validation.
arXiv Detail & Related papers (2020-05-27T13:32:10Z) - Binarizing MobileNet via Evolution-based Searching [66.94247681870125]
We propose a use of evolutionary search to facilitate the construction and training scheme when binarizing MobileNet.
Inspired by one-shot architecture search frameworks, we manipulate the idea of group convolution to design efficient 1-Bit Convolutional Neural Networks (CNNs)
Our objective is to come up with a tiny yet efficient binary neural architecture by exploring the best candidates of the group convolution.
arXiv Detail & Related papers (2020-05-13T13:25:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.