論文の概要: Latent-Predictive Empowerment: Measuring Empowerment without a Simulator
- arxiv url: http://arxiv.org/abs/2410.11155v1
- Date: Tue, 15 Oct 2024 00:41:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-16 14:03:10.029453
- Title: Latent-Predictive Empowerment: Measuring Empowerment without a Simulator
- Title(参考訳): 潜時予測エンパワーメント:シミュレータを使わずにエンパワーメントを測定する
- Authors: Andrew Levy, Alessandro Allievi, George Konidaris,
- Abstract要約: 我々は、より実用的な方法でエンパワーメントを計算するアルゴリズムであるLatent-Predictive Empowerment(LPE)を提案する。
LPEは、スキルと国家間の相互情報の原則的な置き換えである目的を最大化することで、大きなスキルセットを学習する。
- 参考スコア(独自算出の注目度): 56.53777237504011
- License:
- Abstract: Empowerment has the potential to help agents learn large skillsets, but is not yet a scalable solution for training general-purpose agents. Recent empowerment methods learn diverse skillsets by maximizing the mutual information between skills and states; however, these approaches require a model of the transition dynamics, which can be challenging to learn in realistic settings with high-dimensional and stochastic observations. We present Latent-Predictive Empowerment (LPE), an algorithm that can compute empowerment in a more practical manner. LPE learns large skillsets by maximizing an objective that is a principled replacement for the mutual information between skills and states and that only requires a simpler latent-predictive model rather than a full simulator of the environment. We show empirically in a variety of settings--including ones with high-dimensional observations and highly stochastic transition dynamics--that our empowerment objective (i) learns similar-sized skillsets as the leading empowerment algorithm that assumes access to a model of the transition dynamics and (ii) outperforms other model-based approaches to empowerment.
- Abstract(参考訳): エンパワーメントは、エージェントが大きなスキルセットを学ぶのを助ける可能性があるが、汎用エージェントを訓練するためのスケーラブルなソリューションはまだない。
近年のエンパワーメント手法は,スキルと状態の相互情報を最大化することで多様なスキルセットを学習するが,これらのアプローチには遷移ダイナミクスのモデルが必要である。
我々は、より実用的な方法でエンパワーメントを計算するアルゴリズムであるLatent-Predictive Empowerment(LPE)を提案する。
LPEは、スキルと状態間の相互情報の原則的な置き換えである目的を最大化し、環境の完全なシミュレーターではなく、より単純な潜在予測モデルのみを必要とすることによって、大きなスキルセットを学習する。
我々は,高次元観察と高度確率遷移ダイナミクスを含む,さまざまな設定で経験的に示す。
(i)遷移力学モデルへのアクセスを前提とした先行エンパワーメントアルゴリズムとして、同様の大きさのスキルセットを学習し、
(ii)エンパワーメントに対する他のモデルベースのアプローチよりも優れています。
関連論文リスト
- From Novice to Expert: LLM Agent Policy Optimization via Step-wise Reinforcement Learning [62.54484062185869]
本稿では,エージェントの強化学習プロセスの最適化にステップワイド報酬を利用するStepAgentを紹介する。
エージェント反射とポリシー調整を容易にする暗黙の逆・逆の強化学習手法を提案する。
論文 参考訳(メタデータ) (2024-11-06T10:35:11Z) - Reward-free World Models for Online Imitation Learning [25.304836126280424]
本研究では,報酬のない世界モデルを活用したオンライン模倣学習手法を提案する。
提案手法は, 復元を伴わない潜在空間における環境力学を学習し, 効率的かつ高精度なモデリングを可能にする。
DMControl,myoSuite, ManiSkill2 など,様々なベンチマークを用いて本手法の評価を行い,既存手法と比較して優れた実証性能を示した。
論文 参考訳(メタデータ) (2024-10-17T23:13:32Z) - Exploring Model Transferability through the Lens of Potential Energy [78.60851825944212]
トランスファーラーニングは、事前訓練されたディープラーニングモデルが広く利用可能であることから、コンピュータビジョンタスクにおいて重要になっている。
既存のトレーニング済みモデルの転送可能性の測定方法は、符号化された静的特徴とタスクラベルの間の統計的相関に依存する。
我々はこれらの課題に対処するために,PEDという物理に着想を得たアプローチを提案する。
論文 参考訳(メタデータ) (2023-08-29T07:15:57Z) - Concept Learning for Interpretable Multi-Agent Reinforcement Learning [5.179808182296037]
本稿では,ドメインエキスパートからの解釈可能な概念を,マルチエージェント強化学習を通じて学習したモデルに組み込む手法を提案する。
これにより、専門家は、結果のコンセプトモデルについて、これらのハイレベルな概念を実行時に推論するだけでなく、パフォーマンスを改善するために介入し、正しい予測を行うことができる。
シミュレーションおよび実世界の協調競争型マルチエージェントゲームにおいて,政策性能とサンプル効率の利点を生かし,解釈可能性とトレーニング安定性の向上を図っている。
論文 参考訳(メタデータ) (2023-02-23T18:53:09Z) - Self-Optimizing Feature Transformation [33.458785763961004]
特徴変換は、既存の特徴を数学的に変換することで、優れた表現(特徴)空間を抽出することを目的としている。
現在の研究は、ドメイン知識に基づく特徴工学や学習潜在表現に焦点を当てている。
特徴変換のための自己最適化フレームワークを提案する。
論文 参考訳(メタデータ) (2022-09-16T16:50:41Z) - Learning Transferable Motor Skills with Hierarchical Latent Mixture
Policies [37.09286945259353]
階層的混合潜時変動モデルを用いて,データから抽象運動スキルを学習する手法を提案する。
提案手法は,オフラインデータを異なる実行動作に効果的にクラスタ化することができることを示す。
論文 参考訳(メタデータ) (2021-12-09T17:37:14Z) - Efficient Empowerment Estimation for Unsupervised Stabilization [75.32013242448151]
エンパワーメント原理は 直立位置での 力学系の教師なし安定化を可能にする
本稿では,ガウスチャネルとして動的システムのトレーニング可能な表現に基づく代替解を提案する。
提案手法は, サンプルの複雑さが低く, 訓練時より安定であり, エンパワーメント機能の本質的特性を有し, 画像からエンパワーメントを推定できることを示す。
論文 参考訳(メタデータ) (2020-07-14T21:10:16Z) - Goal-Aware Prediction: Learning to Model What Matters [105.43098326577434]
学習した前進力学モデルを使用する際の根本的な課題の1つは、学習したモデルの目的と下流のプランナーやポリシーの目標とのミスマッチである。
本稿では,タスク関連情報への直接的予測を提案し,そのモデルが現在のタスクを認識し,状態空間の関連量のみをモデル化することを奨励する。
提案手法は,目標条件付きシーンの関連部分を効果的にモデル化し,その結果,標準タスク非依存のダイナミックスモデルやモデルレス強化学習より優れていることがわかった。
論文 参考訳(メタデータ) (2020-07-14T16:42:59Z) - Meta-Reinforcement Learning Robust to Distributional Shift via Model
Identification and Experience Relabeling [126.69933134648541]
本稿では,テスト時にアウト・オブ・ディストリビューション・タスクに直面した場合に,効率よく外挿できるメタ強化学習アルゴリズムを提案する。
我々の手法は単純な洞察に基づいており、動的モデルが非政治データに効率的かつ一貫して適応可能であることを認識している。
論文 参考訳(メタデータ) (2020-06-12T13:34:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。