論文の概要: Improving Bias in Facial Attribute Classification: A Combined Impact of KL Divergence induced Loss Function and Dual Attention
- arxiv url: http://arxiv.org/abs/2410.11176v1
- Date: Tue, 15 Oct 2024 01:29:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-16 14:03:48.572232
- Title: Improving Bias in Facial Attribute Classification: A Combined Impact of KL Divergence induced Loss Function and Dual Attention
- Title(参考訳): 顔面属性分類におけるバイアスの改善:KL分枝誘発損失関数とデュアルアテンションの併用効果
- Authors: Shweta Patel, Dakshina Ranjan Kisku,
- Abstract要約: 初期のシステムは、特に性別や人種の分類において、しばしば人口統計上の偏見を示しており、肌の色合いが暗い女性や個人の精度は低かった。
本稿では,KL分割正規化とクロスエントロピー損失関数によって強化された,事前学習型Inception-ResNet V1モデルを用いた二重注意機構を用いた手法を提案する。
実験の結果,公正度と分類精度の両面で有意な改善が見られ,偏見に対処し,顔認識システムの信頼性を高めることが期待できる。
- 参考スコア(独自算出の注目度): 3.5527561584422465
- License:
- Abstract: Ensuring that AI-based facial recognition systems produce fair predictions and work equally well across all demographic groups is crucial. Earlier systems often exhibited demographic bias, particularly in gender and racial classification, with lower accuracy for women and individuals with darker skin tones. To tackle this issue and promote fairness in facial recognition, researchers have introduced several bias-mitigation techniques for gender classification and related algorithms. However, many challenges remain, such as data diversity, balancing fairness with accuracy, disparity, and bias measurement. This paper presents a method using a dual attention mechanism with a pre-trained Inception-ResNet V1 model, enhanced by KL-divergence regularization and a cross-entropy loss function. This approach reduces bias while improving accuracy and computational efficiency through transfer learning. The experimental results show significant improvements in both fairness and classification accuracy, providing promising advances in addressing bias and enhancing the reliability of facial recognition systems.
- Abstract(参考訳): AIベースの顔認識システムが公正な予測を生み出し、すべての人口集団で同じように機能することが不可欠である。
初期のシステムは、特に性別や人種の分類において、しばしば人口統計上の偏見を示しており、肌の色合いが暗い女性や個人の精度は低かった。
この問題に対処し、顔認識における公平性を促進するために、研究者は、性別分類と関連するアルゴリズムに対するバイアス軽減技術をいくつか導入した。
しかし、データの多様性、正確さと公平さのバランス、格差、バイアス測定など、多くの課題が残っている。
本稿では,KL分割正規化とクロスエントロピー損失関数によって強化された,事前学習型Inception-ResNet V1モデルを用いた二重注意機構を用いた手法を提案する。
このアプローチは、転送学習による精度と計算効率を改善しながらバイアスを低減する。
実験の結果,公正度と分類精度の両面で有意な改善が見られ,偏見に対処し,顔認識システムの信頼性を高めることが期待できる。
関連論文リスト
- FineFACE: Fair Facial Attribute Classification Leveraging Fine-grained Features [3.9440964696313485]
自動的な顔属性分類アルゴリズムでは、人口統計バイアスの存在が強調されている。
既存のバイアス緩和技術は、一般に人口統計学的なアノテーションを必要とし、しばしば公正性と正確性の間のトレードオフを得る。
そこで本稿では, 顔属性の公平な分類法を, きめ細かな分類問題とみなして提案する。
論文 参考訳(メタデータ) (2024-08-29T20:08:22Z) - Toward Fairer Face Recognition Datasets [69.04239222633795]
顔認識と検証は、ディープ表現の導入によってパフォーマンスが向上したコンピュータビジョンタスクである。
実際のトレーニングデータセットにおける顔データとバイアスのセンシティブな性格による倫理的、法的、技術的な課題は、彼らの開発を妨げる。
生成されたトレーニングデータセットに階層属性のバランス機構を導入することにより、公平性を促進する。
論文 参考訳(メタデータ) (2024-06-24T12:33:21Z) - Biasing & Debiasing based Approach Towards Fair Knowledge Transfer for Equitable Skin Analysis [16.638722872021095]
学生ネットワークに公平な知識を伝達する2バイアスの教師のアプローチを提案する。
本手法は,学生ネットワークに存在するバイアスを,予測精度を損なうことなく軽減する。
論文 参考訳(メタデータ) (2024-05-16T17:02:23Z) - Classes Are Not Equal: An Empirical Study on Image Recognition Fairness [100.36114135663836]
我々は,クラスが等しくないことを実験的に証明し,様々なデータセットにまたがる画像分類モデルにおいて,公平性の問題が顕著であることを示した。
以上の結果から,モデルでは認識が困難であるクラスに対して,予測バイアスが大きくなる傾向が示唆された。
データ拡張および表現学習アルゴリズムは、画像分類のある程度の公平性を促進することにより、全体的なパフォーマンスを向上させる。
論文 参考訳(メタデータ) (2024-02-28T07:54:50Z) - Towards Fair Face Verification: An In-depth Analysis of Demographic
Biases [11.191375513738361]
近年,深層学習に基づく人物識別・検証システムは,精度の面で著しく向上している。
しかし、このようなシステムは人種、年齢、性別に関する重大な偏見を呈している。
本稿では,これらの要因の交叉性に着目した詳細な分析を行う。
論文 参考訳(メタデータ) (2023-07-19T14:49:14Z) - Learning for Counterfactual Fairness from Observational Data [62.43249746968616]
公正な機械学習は、人種、性別、年齢などの特定の保護された(感受性のある)属性によって記述されるある種のサブグループに対して、学習モデルのバイアスを取り除くことを目的としている。
カウンターファクトフェアネスを達成するための既存の手法の前提条件は、データに対する因果モデルの事前の人間の知識である。
本研究では,新しいフレームワークCLAIREを提案することにより,因果関係を付与せずに観測データから対実的に公正な予測を行う問題に対処する。
論文 参考訳(メタデータ) (2023-07-17T04:08:29Z) - MultiFair: Multi-Group Fairness in Machine Learning [52.24956510371455]
機械学習におけるマルチグループフェアネスの研究(MultiFair)
この問題を解決するために,汎用的なエンドツーエンドのアルゴリズムフレームワークを提案する。
提案するフレームワークは多くの異なる設定に一般化可能である。
論文 参考訳(メタデータ) (2021-05-24T02:30:22Z) - Domain-Incremental Continual Learning for Mitigating Bias in Facial
Expression and Action Unit Recognition [5.478764356647437]
FERシステムの公平性を高めるための強力なバイアス軽減法として,Continual Learning (CL) の新たな利用法を提案する。
表現認識と行動ユニット(AU)検出タスクにおける分類精度と公平度スコアについて,非CL法とCL法との比較を行った。
実験の結果,CLに基づく手法は,精度と公正度の両方において,他の一般的なバイアス緩和手法よりも優れていた。
論文 参考訳(メタデータ) (2021-03-15T18:22:17Z) - Towards causal benchmarking of bias in face analysis algorithms [54.19499274513654]
顔分析アルゴリズムのアルゴリズムバイアスを測定する実験手法を開発した。
提案手法は,一致したサンプル画像の合成トランスクター'を生成することに基づく。
性別分類アルゴリズムの偏見を従来の観察法を用いて分析することにより,本手法の有効性を検証した。
論文 参考訳(メタデータ) (2020-07-13T17:10:34Z) - Mitigating Face Recognition Bias via Group Adaptive Classifier [53.15616844833305]
この研究は、全てのグループの顔がより平等に表現できる公正な顔表現を学ぶことを目的としている。
我々の研究は、競争精度を維持しながら、人口集団間での顔認識バイアスを軽減することができる。
論文 参考訳(メタデータ) (2020-06-13T06:43:37Z) - Post-Comparison Mitigation of Demographic Bias in Face Recognition Using
Fair Score Normalization [15.431761867166]
顔認識におけるバイアスの影響を低減するために,教師なしのフェアスコア正規化手法を提案する。
我々の解決策は、性別を考慮した場合の人口バイアスを最大82.7%削減する。
従来の研究とは対照的に、我々の公正な正規化アプローチは、偽一致率0.001で53.2%、偽一致率0.00001で82.9%まで全体の性能を向上させる。
論文 参考訳(メタデータ) (2020-02-10T08:17:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。