論文の概要: Mitigating Bias in Facial Recognition Systems: Centroid Fairness Loss Optimization
- arxiv url: http://arxiv.org/abs/2504.19370v1
- Date: Sun, 27 Apr 2025 22:17:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:54.25559
- Title: Mitigating Bias in Facial Recognition Systems: Centroid Fairness Loss Optimization
- Title(参考訳): 顔認識システムにおけるバイアスの緩和:Centroid Fairness Loss Optimization
- Authors: Jean-Rémy Conti, Stéphan Clémençon,
- Abstract要約: 公正なAIシステムの社会的需要は、新しい公正性基準を満たす予測モデルを開発する研究コミュニティに圧力を与えている。
特に、特定の人口セグメントにまたがる特定の顔認識(FR)システムによる誤差の変動は、後者の展開を損なう。
本稿では,Centroid-based scores に作用する回帰損失を最適化することにより,事前学習されたFRモデルの公平性を改善するための新しいポストプロセッシング手法を提案する。
- 参考スコア(独自算出の注目度): 9.537960917804993
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The urging societal demand for fair AI systems has put pressure on the research community to develop predictive models that are not only globally accurate but also meet new fairness criteria, reflecting the lack of disparate mistreatment with respect to sensitive attributes ($\textit{e.g.}$ gender, ethnicity, age). In particular, the variability of the errors made by certain Facial Recognition (FR) systems across specific segments of the population compromises the deployment of the latter, and was judged unacceptable by regulatory authorities. Designing fair FR systems is a very challenging problem, mainly due to the complex and functional nature of the performance measure used in this domain ($\textit{i.e.}$ ROC curves) and because of the huge heterogeneity of the face image datasets usually available for training. In this paper, we propose a novel post-processing approach to improve the fairness of pre-trained FR models by optimizing a regression loss which acts on centroid-based scores. Beyond the computational advantages of the method, we present numerical experiments providing strong empirical evidence of the gain in fairness and of the ability to preserve global accuracy.
- Abstract(参考訳): 公正なAIシステムに対する社会的要求は、世界規模で正確であるだけでなく、新たな公正性基準を満たす予測モデルを開発するよう研究コミュニティに圧力をかけている。
特に、特定の人口の特定の部分にまたがる特定の顔認識システム(FR)による誤りの多様性は、後者の展開を損なうものであり、規制当局によって受け入れがたいと判断された。
公正なFRシステムの設計は、主にこの領域で使用されるパフォーマンス指標の複雑で機能的な性質(\textit{i.e.}$ ROC曲線)と、通常トレーニングに利用できる顔画像データセットの巨大な不均一性のため、非常に難しい問題である。
本稿では,Centroidベースのスコアに作用する回帰損失を最適化することにより,事前学習されたFRモデルの公平性を改善するための新しい後処理手法を提案する。
本手法の計算的優位性以外にも,公正さの獲得と世界的正確性を維持する能力の実証的証明を強く提供する数値実験を提示する。
関連論文リスト
- FAIR-SIGHT: Fairness Assurance in Image Recognition via Simultaneous Conformal Thresholding and Dynamic Output Repair [4.825037489691159]
本稿では,コンフォメーション予測と動的出力修復機構を組み合わせることで,コンピュータビジョンシステムの公平性を確保するためのポストホックフレームワークを提案する。
提案手法は,予測誤差と公平性違反を同時に評価する,公平性を考慮した非整合性スコアを算出する。
新しい画像の非整合スコアがしきい値を超えると、FAIR-SIGHTは分類のためのロジットシフトや検出のための信頼度補正など、対象とする修正調整を実行する。
論文 参考訳(メタデータ) (2025-04-10T02:23:06Z) - Fair Bilevel Neural Network (FairBiNN): On Balancing fairness and accuracy via Stackelberg Equilibrium [0.3350491650545292]
バイアスを緩和する現在の方法は、情報損失と精度と公平性のバランスが不十分であることが多い。
本稿では,二段階最適化の原理に基づく新しい手法を提案する。
私たちのディープラーニングベースのアプローチは、正確性と公平性の両方を同時に最適化します。
論文 参考訳(メタデータ) (2024-10-21T18:53:39Z) - Improving Bias in Facial Attribute Classification: A Combined Impact of KL Divergence induced Loss Function and Dual Attention [3.5527561584422465]
初期のシステムは、特に性別や人種の分類において、しばしば人口統計上の偏見を示しており、肌の色合いが暗い女性や個人の精度は低かった。
本稿では,KL分割正規化とクロスエントロピー損失関数によって強化された,事前学習型Inception-ResNet V1モデルを用いた二重注意機構を用いた手法を提案する。
実験の結果,公正度と分類精度の両面で有意な改善が見られ,偏見に対処し,顔認識システムの信頼性を高めることが期待できる。
論文 参考訳(メタデータ) (2024-10-15T01:29:09Z) - Identifying and Mitigating Social Bias Knowledge in Language Models [52.52955281662332]
個々人の社会的偏見をきめ細かなキャリブレーションを可能にする新しいデバイアス・アプローチであるFairness Stamp(FAST)を提案する。
FASTは最先端のベースラインを超え、デバイアス性能が優れている。
これは、大きな言語モデルにおける公平性を達成するためのきめ細かいデバイアス戦略の可能性を強調している。
論文 参考訳(メタデータ) (2024-08-07T17:14:58Z) - Thinking Racial Bias in Fair Forgery Detection: Models, Datasets and Evaluations [63.52709761339949]
最初に、Fair Forgery Detection(FairFD)データセットと呼ばれる専用のデータセットをコントリビュートし、SOTA(Public State-of-the-art)メソッドの人種的偏見を証明する。
我々は、偽りの結果を避けることができる平均的メトリクスと実用正規化メトリクスを含む新しいメトリクスを設計する。
また,有効で堅牢な後処理技術であるBias Pruning with Fair Activations (BPFA)も提案する。
論文 参考訳(メタデータ) (2024-07-19T14:53:18Z) - Learning Fairer Representations with FairVIC [0.0]
自動意思決定システムにおけるバイアスの緩和は、公平さとデータセット固有のバイアスのニュアンスな定義のために重要な課題である。
学習中の損失関数に分散項、不変項、共分散項を統合することにより、ニューラルネットワークの公平性を高める革新的なアプローチであるFairVICを導入する。
ベンチマークデータセットにおけるFairVICを,グループと個人の両方の公正性を考慮して比較して評価し,精度と公正性のトレードオフに関するアブレーション研究を行う。
論文 参考訳(メタデータ) (2024-04-28T10:10:21Z) - Learning for Counterfactual Fairness from Observational Data [62.43249746968616]
公正な機械学習は、人種、性別、年齢などの特定の保護された(感受性のある)属性によって記述されるある種のサブグループに対して、学習モデルのバイアスを取り除くことを目的としている。
カウンターファクトフェアネスを達成するための既存の手法の前提条件は、データに対する因果モデルの事前の人間の知識である。
本研究では,新しいフレームワークCLAIREを提案することにより,因果関係を付与せずに観測データから対実的に公正な予測を行う問題に対処する。
論文 参考訳(メタデータ) (2023-07-17T04:08:29Z) - Chasing Fairness Under Distribution Shift: A Model Weight Perturbation
Approach [72.19525160912943]
まず,分布シフト,データ摂動,モデルウェイト摂動の関連性を理論的に検証した。
次に、ターゲットデータセットの公平性を保証するのに十分な条件を分析します。
これらの十分な条件により、ロバストフェアネス正則化(RFR)を提案する。
論文 参考訳(メタデータ) (2023-03-06T17:19:23Z) - Stochastic Methods for AUC Optimization subject to AUC-based Fairness
Constraints [51.12047280149546]
公正な予測モデルを得るための直接的なアプローチは、公正な制約の下で予測性能を最適化することでモデルを訓練することである。
フェアネスを考慮した機械学習モデルのトレーニング問題を,AUCに基づくフェアネス制約のクラスを対象とする最適化問題として定式化する。
フェアネス測定値の異なる実世界のデータに対するアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2022-12-23T22:29:08Z) - Fair and Optimal Classification via Post-Processing [10.163721748735801]
本稿では、分類問題における人口統計学の特質的トレードオフの完全な評価について述べる。
ランダム化および属性認識フェア分類器によって達成可能な最小誤差率は、ワッサーシュタイン・バリセンタ問題の最適値によって与えられることを示す。
論文 参考訳(メタデータ) (2022-11-03T00:04:04Z) - Fairness without the sensitive attribute via Causal Variational
Autoencoder [17.675997789073907]
EUにおけるプライバシーの目的とRGPDのような多彩な規制のため、多くの個人機密属性は収集されないことが多い。
近年の開発成果を近似推論に活用することにより,このギャップを埋めるためのアプローチを提案する。
因果グラフに基づいて、機密情報プロキシを推論するために、SRCVAEと呼ばれる新しい変分自動符号化ベースのフレームワークを利用する。
論文 参考訳(メタデータ) (2021-09-10T17:12:52Z) - Domain-Incremental Continual Learning for Mitigating Bias in Facial
Expression and Action Unit Recognition [5.478764356647437]
FERシステムの公平性を高めるための強力なバイアス軽減法として,Continual Learning (CL) の新たな利用法を提案する。
表現認識と行動ユニット(AU)検出タスクにおける分類精度と公平度スコアについて,非CL法とCL法との比較を行った。
実験の結果,CLに基づく手法は,精度と公正度の両方において,他の一般的なバイアス緩和手法よりも優れていた。
論文 参考訳(メタデータ) (2021-03-15T18:22:17Z) - Supercharging Imbalanced Data Learning With Energy-based Contrastive
Representation Transfer [72.5190560787569]
コンピュータビジョンにおいて、長い尾のデータセットからの学習は、特に自然画像データセットの繰り返しのテーマである。
本稿では,データ生成機構がラベル条件と特徴分布の間で不変であるメタ分散シナリオを提案する。
これにより、因果データインフレーションの手順を利用してマイノリティクラスの表現を拡大できる。
論文 参考訳(メタデータ) (2020-11-25T00:13:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。