論文の概要: DeltaDock: A Unified Framework for Accurate, Efficient, and Physically Reliable Molecular Docking
- arxiv url: http://arxiv.org/abs/2410.11224v2
- Date: Wed, 16 Oct 2024 11:56:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-17 13:41:03.849680
- Title: DeltaDock: A Unified Framework for Accurate, Efficient, and Physically Reliable Molecular Docking
- Title(参考訳): DeltaDock: 正確な、効率的、物理的に信頼性の高い分子ドッキングのための統一フレームワーク
- Authors: Jiaxian Yan, Zaixi Zhang, Jintao Zhu, Kai Zhang, Jianfeng Pei, Qi Liu,
- Abstract要約: 分子ドッキングはタンパク質-リガンド相互作用を理解するために構造に基づく薬物設計において重要である。
近年のドッキング法の発展により,従来のサンプリング法に比べて効率と精度が著しく向上した。
ポケット予測とサイト固有のドッキングからなる新しい2段階ドッキングフレームワークDeltaDockを提案する。
- 参考スコア(独自算出の注目度): 15.205550571902366
- License:
- Abstract: Molecular docking, a technique for predicting ligand binding poses, is crucial in structure-based drug design for understanding protein-ligand interactions. Recent advancements in docking methods, particularly those leveraging geometric deep learning (GDL), have demonstrated significant efficiency and accuracy advantages over traditional sampling methods. Despite these advancements, current methods are often tailored for specific docking settings, and limitations such as the neglect of protein side-chain structures, difficulties in handling large binding pockets, and challenges in predicting physically valid structures exist. To accommodate various docking settings and achieve accurate, efficient, and physically reliable docking, we propose a novel two-stage docking framework, DeltaDock, consisting of pocket prediction and site-specific docking. We innovatively reframe the pocket prediction task as a pocket-ligand alignment problem rather than direct prediction in the first stage. Then we follow a bi-level coarse-to-fine iterative refinement process to perform site-specific docking. Comprehensive experiments demonstrate the superior performance of DeltaDock. Notably, in the blind docking setting, DeltaDock achieves a 31\% relative improvement over the docking success rate compared with the previous state-of-the-art GDL model. With the consideration of physical validity, this improvement increases to about 300\%.
- Abstract(参考訳): リガンド結合の予測技術である分子ドッキングは、タンパク質-リガンド相互作用を理解するための構造に基づく薬物設計において重要である。
近年のドッキング法,特に幾何深層学習(GDL)を活用したドッキング法は,従来のサンプリング法に比べて高い効率性と精度の優位性を示した。
これらの進歩にもかかわらず、現在の手法は特定のドッキング設定に合わせて調整されることが多く、タンパク質の側鎖構造を無視したり、大きな結合ポケットを扱うのが困難であったり、物理的に有効な構造の予測が困難であったりといった制限がある。
様々なドッキング設定に対応し,正確で,効率的で,物理的に信頼性の高いドッキングを実現するために,ポケット予測とサイト固有のドッキングからなる新しい2段階ドッキングフレームワークDeltaDockを提案する。
第1段階では直接予測ではなく,ポケットリガンドアライメント問題としてポケット予測タスクを革新的に再構成する。
次に, サイト固有のドッキングを行うために, 2段階の粗粒度反復精錬プロセスに従う。
総合的な実験はDeltaDockの優れた性能を示している。
特に、ブラインドドッキング環境では、DeltaDockは以前の最先端GDLモデルと比較してドッキング成功率よりも31倍の相対的な改善を実現している。
身体的妥当性を考慮すると、この改善はおよそ300\%に増加する。
関連論文リスト
- Re-Dock: Towards Flexible and Realistic Molecular Docking with Diffusion
Bridge [69.80471117520719]
Re-Dockは、幾何学多様体に拡張された新しい拡散橋生成モデルである。
我々はNewton-Euler方程式にインスパイアされたエネルギー-幾何学マッピングを提案し、結合エネルギーとコンフォーメーションを共モデリングする。
アポドックやクロスドックといった設計済みのベンチマークデータセットの実験は、現在の手法よりもモデルの有効性と効率性が優れていることを示している。
論文 参考訳(メタデータ) (2024-02-18T05:04:50Z) - Towards Continual Learning Desiderata via HSIC-Bottleneck
Orthogonalization and Equiangular Embedding [55.107555305760954]
本稿では,レイヤワイドパラメータのオーバーライトや決定境界の歪みに起因する,概念的にシンプルで効果的な手法を提案する。
提案手法は,ゼロの指数バッファと1.02倍の差が絶対的に優れていても,競争精度が向上する。
論文 参考訳(メタデータ) (2024-01-17T09:01:29Z) - Rigid Protein-Protein Docking via Equivariant Elliptic-Paraboloid
Interface Prediction [19.73508673791042]
硬質タンパク質ドッキングの研究は、薬物設計やタンパク質工学といった様々なタスクにおいて重要な役割を担っている。
本稿では,タンパク質-タンパク質ドッキングインタフェースを表現するために,楕円型パラボロイドを予測するElliDockという新しい学習手法を提案する。
その設計上、エリドックはタンパク質の任意の回転/翻訳に関して独立に同型である。
論文 参考訳(メタデータ) (2024-01-17T05:39:03Z) - Multi-scale Iterative Refinement towards Robust and Versatile Molecular
Docking [17.28573902701018]
分子ドッキング(英: molecular docking)は、小分子のタンパク質標的への結合コンホメーションを予測するために使われる重要な計算ツールである。
我々は、効率的な分子ドッキング用に設計された堅牢で汎用的なフレームワークであるDeltaDockを紹介する。
論文 参考訳(メタデータ) (2023-11-30T14:09:20Z) - Pre-Training on Large-Scale Generated Docking Conformations with HelixDock to Unlock the Potential of Protein-ligand Structure Prediction Models [42.16524616409125]
本研究では,大規模ドッキングコンフォーメーションの事前学習により,優れた性能を有するタンパク質リガンド構造予測モデルが得られることを示す。
提案モデルであるHelixDockは,物理ベースのドッキングツールによってカプセル化された物理知識を,事前学習期間中に取得することを目的としている。
論文 参考訳(メタデータ) (2023-10-21T05:54:26Z) - FABind: Fast and Accurate Protein-Ligand Binding [127.7790493202716]
$mathbfFABind$はポケット予測とドッキングを組み合わせたエンドツーエンドモデルで、正確で高速なタンパク質-リガンド結合を実現する。
提案モデルでは,既存手法と比較して有効性と効率性に強い利点が示される。
論文 参考訳(メタデータ) (2023-10-10T16:39:47Z) - DockGame: Cooperative Games for Multimeric Rigid Protein Docking [45.970633276976045]
ドッキングのための新しいゲーム理論フレームワークであるDockGameを紹介した。
タンパク質ドッキングはタンパク質間の協調ゲームであり、最終組み立て構造が安定な平衡を構成する。
Docking Benchmark 5.5データセットでは、DockGameは従来のドッキングメソッドよりもはるかに高速なランタイムを持つ。
論文 参考訳(メタデータ) (2023-10-09T22:02:05Z) - DSDP: A Blind Docking Strategy Accelerated by GPUs [6.221048348194304]
我々は,従来の学習手法と機械学習手法の両方の利点を生かし,ブラインドドッキングの性能を向上させるために,Deep Site and Docking Pose (DSDP) を提案する。
DSDPは、2つのトップ1成功率 (RMSD 2 AA) に達する。
DUD-EデータセットとEquiBind, TankBind, DiffDockで使用される時間分割PDBBindデータセットのパフォーマンスも有効である。
論文 参考訳(メタデータ) (2023-03-16T07:00:21Z) - DiffDock: Diffusion Steps, Twists, and Turns for Molecular Docking [28.225704750892795]
タンパク質への小さな分子リガンドの結合構造を予測することは、薬物設計にとって重要である。
近年, ドッキングを回帰問題として扱う深層学習法は, 従来の検索手法に比べて実行時間が少なくなっている。
我々は、分子ドッキングを生成的モデリング問題とし、非ユークリッド多様体上のリガンドポーズの拡散生成モデルであるDiffDockを開発した。
論文 参考訳(メタデータ) (2022-10-04T17:38:14Z) - Independent SE(3)-Equivariant Models for End-to-End Rigid Protein
Docking [57.2037357017652]
我々は、剛体タンパク質ドッキング、すなわち、個々の非結合構造からタンパク質-タンパク質複合体の3次元構造を計算的に予測する。
本研究では, タンパク質の回転と翻訳を予測し, 1つのタンパク質をドッキング位置に置くために, ペアワイズ非独立なSE(3)-等変グラフマッチングネットワークを設計する。
我々のモデルはEquiDockと呼ばれ、結合ポケットを近似し、キーポイントマッチングとアライメントを用いてドッキングポーズを予測する。
論文 参考訳(メタデータ) (2021-11-15T18:46:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。