論文の概要: Re-Dock: Towards Flexible and Realistic Molecular Docking with Diffusion
Bridge
- arxiv url: http://arxiv.org/abs/2402.11459v2
- Date: Wed, 21 Feb 2024 07:46:07 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-22 12:10:58.032045
- Title: Re-Dock: Towards Flexible and Realistic Molecular Docking with Diffusion
Bridge
- Title(参考訳): Re-Dock: 拡散ブリッジによるフレキシブルでリアルな分子ドッキングを目指して
- Authors: Yufei Huang, Odin Zhang, Lirong Wu, Cheng Tan, Haitao Lin, Zhangyang
Gao, Siyuan Li and Stan.Z. Li
- Abstract要約: Re-Dockは、幾何学多様体に拡張された新しい拡散橋生成モデルである。
我々はNewton-Euler方程式にインスパイアされたエネルギー-幾何学マッピングを提案し、結合エネルギーとコンフォーメーションを共モデリングする。
アポドックやクロスドックといった設計済みのベンチマークデータセットの実験は、現在の手法よりもモデルの有効性と効率性が優れていることを示している。
- 参考スコア(独自算出の注目度): 69.80471117520719
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate prediction of protein-ligand binding structures, a task known as
molecular docking is crucial for drug design but remains challenging. While
deep learning has shown promise, existing methods often depend on holo-protein
structures (docked, and not accessible in realistic tasks) or neglect pocket
sidechain conformations, leading to limited practical utility and unrealistic
conformation predictions. To fill these gaps, we introduce an under-explored
task, named flexible docking to predict poses of ligand and pocket sidechains
simultaneously and introduce Re-Dock, a novel diffusion bridge generative model
extended to geometric manifolds. Specifically, we propose energy-to-geometry
mapping inspired by the Newton-Euler equation to co-model the binding energy
and conformations for reflecting the energy-constrained docking generative
process. Comprehensive experiments on designed benchmark datasets including
apo-dock and cross-dock demonstrate our model's superior effectiveness and
efficiency over current methods.
- Abstract(参考訳): タンパク質-リガンド結合構造の正確な予測は、分子ドッキングとして知られるタスクが薬物設計に不可欠であるが、依然として困難である。
ディープラーニングは期待されているが、既存の手法はホロタンパク質の構造(ドッキングされ、現実的なタスクでは利用できない)やポケットサイドチェーンのコンフォーメーションに依存し、実用性や非現実的なコンフォーメーション予測に限定される。
これらのギャップを埋めるために,リガンドとポケット側鎖のポーズを同時予測するフレキシブルドッキングと呼ばれる未熟なタスクを導入し,幾何多様体に拡張した新しい拡散橋生成モデルであるre-dockを導入する。
具体的には, ニュートン・オイラー方程式に触発されたエネルギー対ジオメトリマッピングを提案し, エネルギー制約ドッキング生成過程を反映する結合エネルギーと配座を共モデル化する。
apo-dockやcross-dockを含む設計ベンチマークデータセットに関する包括的な実験は、現在の手法よりも優れた効果と効率を示している。
関連論文リスト
- Dockformer: A transformer-based molecular docking paradigm for large-scale virtual screening [29.886873241333433]
複合ライブラリのサイズが大きくなるにつれて、従来のドッキングモデルの複雑さが増す。
ディープラーニングアルゴリズムは、ドッキングプロセスのスピードを高めるために、データ駆動リサーチと開発モデルを提供することができる。
本研究では,Dockformerという,ディープラーニングに基づくドッキング手法を紹介する。
論文 参考訳(メタデータ) (2024-11-11T06:25:13Z) - Bridging Geometric States via Geometric Diffusion Bridge [79.60212414973002]
本稿では,初期および対象の幾何状態を正確にブリッジする新しい生成モデリングフレームワークであるGeometric Diffusion Bridge (GDB)を紹介する。
GDBは、幾何学的状態の接続のためにDoobの$h$-transformの修正版から派生した同変拡散ブリッジを使用している。
我々はGDBが既存の最先端のアプローチを超越し、幾何学的状態を正確にブリッジするための新しい経路を開くことを示す。
論文 参考訳(メタデータ) (2024-10-31T17:59:53Z) - SPIN: SE(3)-Invariant Physics Informed Network for Binding Affinity Prediction [3.406882192023597]
タンパク質-リガンド結合親和性の正確な予測は、薬物開発に不可欠である。
伝統的な手法は、しばしば複合体の空間情報を正確にモデル化するのに失敗する。
この課題に適用可能な様々な帰納バイアスを組み込んだモデルSPINを提案する。
論文 参考訳(メタデータ) (2024-07-10T08:40:07Z) - Diffusion Model with Cross Attention as an Inductive Bias for Disentanglement [58.9768112704998]
遠方表現学習は、観測データ内の本質的要因を抽出する試みである。
我々は新しい視点と枠組みを導入し、クロスアテンションを持つ拡散モデルが強力な帰納バイアスとなることを示す。
これは、複雑な設計を必要とせず、クロスアテンションを持つ拡散モデルの強力な解離能力を明らかにする最初の研究である。
論文 参考訳(メタデータ) (2024-02-15T05:07:54Z) - Multi-scale Iterative Refinement towards Robust and Versatile Molecular
Docking [17.28573902701018]
分子ドッキング(英: molecular docking)は、小分子のタンパク質標的への結合コンホメーションを予測するために使われる重要な計算ツールである。
我々は、効率的な分子ドッキング用に設計された堅牢で汎用的なフレームワークであるDeltaDockを紹介する。
論文 参考訳(メタデータ) (2023-11-30T14:09:20Z) - Pre-Training on Large-Scale Generated Docking Conformations with HelixDock to Unlock the Potential of Protein-ligand Structure Prediction Models [42.16524616409125]
本研究では,大規模ドッキングコンフォーメーションの事前学習により,優れた性能を有するタンパク質リガンド構造予測モデルが得られることを示す。
提案モデルであるHelixDockは,物理ベースのドッキングツールによってカプセル化された物理知識を,事前学習期間中に取得することを目的としている。
論文 参考訳(メタデータ) (2023-10-21T05:54:26Z) - ETDock: A Novel Equivariant Transformer for Protein-Ligand Docking [36.14826783009814]
従来のドッキング法は、タンパク質と薬物のドッキングを予測するために、スコアリング機能とディープラーニングに依存している。
本稿では,タンパク質リガンドドッキングポーズ予測のためのトランスフォーマーニューラルネットワークを提案する。
実データを用いた実験結果から,本モデルが最先端の性能を達成できることが示唆された。
論文 参考訳(メタデータ) (2023-10-12T06:23:12Z) - Latent Traversals in Generative Models as Potential Flows [113.4232528843775]
我々は,学習された動的ポテンシャルランドスケープを持つ潜在構造をモデル化することを提案する。
物理、最適輸送、神経科学にインスパイアされたこれらの潜在的景観は、物理的に現実的な偏微分方程式として学習される。
本手法は,最先端のベースラインよりも定性的かつ定量的に歪んだ軌跡を実現する。
論文 参考訳(メタデータ) (2023-04-25T15:53:45Z) - DIFFormer: Scalable (Graph) Transformers Induced by Energy Constrained
Diffusion [66.21290235237808]
本稿では,データセットからのインスタンスのバッチを進化状態にエンコードするエネルギー制約拡散モデルを提案する。
任意のインスタンス対間の対拡散強度に対する閉形式最適推定を示唆する厳密な理論を提供する。
各種タスクにおいて優れた性能を有する汎用エンコーダバックボーンとして,本モデルの適用性を示す実験を行った。
論文 参考訳(メタデータ) (2023-01-23T15:18:54Z) - A Unifying and Canonical Description of Measure-Preserving Diffusions [60.59592461429012]
ユークリッド空間における測度保存拡散の完全なレシピは、最近、いくつかのMCMCアルゴリズムを単一のフレームワークに統合した。
我々は、この構成を任意の多様体に改善し一般化する幾何学理論を開発する。
論文 参考訳(メタデータ) (2021-05-06T17:36:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。