Representation Similarity: A Better Guidance of DNN Layer Sharing for Edge Computing without Training
- URL: http://arxiv.org/abs/2410.11233v1
- Date: Tue, 15 Oct 2024 03:35:54 GMT
- Title: Representation Similarity: A Better Guidance of DNN Layer Sharing for Edge Computing without Training
- Authors: Bryan Bo Cao, Abhinav Sharma, Manavjeet Singh, Anshul Gandhi, Samir Das, Shubham Jain,
- Abstract summary: We propose a new model merging scheme by sharing representations at the edge, guided by representation similarity S.
We show that S is extremely highly correlated with merged model's accuracy with Pearson Correlation Coefficient |r| > 0.94 than other metrics.
- Score: 3.792729116385123
- License:
- Abstract: Edge computing has emerged as an alternative to reduce transmission and processing delay and preserve privacy of the video streams. However, the ever-increasing complexity of Deep Neural Networks (DNNs) used in video-based applications (e.g. object detection) exerts pressure on memory-constrained edge devices. Model merging is proposed to reduce the DNNs' memory footprint by keeping only one copy of merged layers' weights in memory. In existing model merging techniques, (i) only architecturally identical layers can be shared; (ii) requires computationally expensive retraining in the cloud; (iii) assumes the availability of ground truth for retraining. The re-evaluation of a merged model's performance, however, requires a validation dataset with ground truth, typically runs at the cloud. Common metrics to guide the selection of shared layers include the size or computational cost of shared layers or representation size. We propose a new model merging scheme by sharing representations (i.e., outputs of layers) at the edge, guided by representation similarity S. We show that S is extremely highly correlated with merged model's accuracy with Pearson Correlation Coefficient |r| > 0.94 than other metrics, demonstrating that representation similarity can serve as a strong validation accuracy indicator without ground truth. We present our preliminary results of the newly proposed model merging scheme with identified challenges, demonstrating a promising research future direction.
Related papers
- Equi-GSPR: Equivariant SE(3) Graph Network Model for Sparse Point Cloud Registration [2.814748676983944]
We propose a graph neural network model embedded with a local Spherical Euclidean 3D equivariance property through SE(3) message passing based propagation.
Our model is composed mainly of a descriptor module, equivariant graph layers, match similarity, and the final regression layers.
Experiments conducted on the 3DMatch and KITTI datasets exhibit the compelling and robust performance of our model compared to state-of-the-art approaches.
arXiv Detail & Related papers (2024-10-08T06:48:01Z) - MPruner: Optimizing Neural Network Size with CKA-Based Mutual Information Pruning [7.262751938473306]
Pruning is a well-established technique that reduces the size of neural networks while mathematically guaranteeing accuracy preservation.
We develop a new pruning algorithm, MPruner, that leverages mutual information through vector similarity.
MPruner achieved up to a 50% reduction in parameters and memory usage for CNN and transformer-based models, with minimal to no loss in accuracy.
arXiv Detail & Related papers (2024-08-24T05:54:47Z) - On Layer-wise Representation Similarity: Application for Multi-Exit Models with a Single Classifier [20.17288970927518]
We study the similarity of representations between the hidden layers of individual transformers.
We propose an aligned training approach to enhance the similarity between internal representations.
arXiv Detail & Related papers (2024-06-20T16:41:09Z) - LiteNeXt: A Novel Lightweight ConvMixer-based Model with Self-embedding Representation Parallel for Medical Image Segmentation [2.0901574458380403]
We propose a new lightweight but efficient model, namely LiteNeXt, for medical image segmentation.
LiteNeXt is trained from scratch with small amount of parameters (0.71M) and Giga Floating Point Operations Per Second (0.42).
arXiv Detail & Related papers (2024-04-04T01:59:19Z) - Towards Robust and Efficient Cloud-Edge Elastic Model Adaptation via Selective Entropy Distillation [56.79064699832383]
We establish a Cloud-Edge Elastic Model Adaptation (CEMA) paradigm in which the edge models only need to perform forward propagation.
In our CEMA, to reduce the communication burden, we devise two criteria to exclude unnecessary samples from uploading to the cloud.
arXiv Detail & Related papers (2024-02-27T08:47:19Z) - Layer-wise Linear Mode Connectivity [52.6945036534469]
Averaging neural network parameters is an intuitive method for the knowledge of two independent models.
It is most prominently used in federated learning.
We analyse the performance of the models that result from averaging single, or groups.
arXiv Detail & Related papers (2023-07-13T09:39:10Z) - A Low-Complexity Approach to Rate-Distortion Optimized Variable Bit-Rate
Compression for Split DNN Computing [5.3221129103999125]
Split computing has emerged as a recent paradigm for implementation of DNN-based AI workloads.
We present an approach that addresses the challenge of optimizing the rate-accuracy-complexity trade-off.
Our approach is remarkably lightweight, both during training and inference, highly effective and achieves excellent rate-distortion performance.
arXiv Detail & Related papers (2022-08-24T15:02:11Z) - Large-Margin Representation Learning for Texture Classification [67.94823375350433]
This paper presents a novel approach combining convolutional layers (CLs) and large-margin metric learning for training supervised models on small datasets for texture classification.
The experimental results on texture and histopathologic image datasets have shown that the proposed approach achieves competitive accuracy with lower computational cost and faster convergence when compared to equivalent CNNs.
arXiv Detail & Related papers (2022-06-17T04:07:45Z) - Semantic Correspondence with Transformers [68.37049687360705]
We propose Cost Aggregation with Transformers (CATs) to find dense correspondences between semantically similar images.
We include appearance affinity modelling to disambiguate the initial correlation maps and multi-level aggregation.
We conduct experiments to demonstrate the effectiveness of the proposed model over the latest methods and provide extensive ablation studies.
arXiv Detail & Related papers (2021-06-04T14:39:03Z) - Pre-Trained Models for Heterogeneous Information Networks [57.78194356302626]
We propose a self-supervised pre-training and fine-tuning framework, PF-HIN, to capture the features of a heterogeneous information network.
PF-HIN consistently and significantly outperforms state-of-the-art alternatives on each of these tasks, on four datasets.
arXiv Detail & Related papers (2020-07-07T03:36:28Z) - Model Fusion via Optimal Transport [64.13185244219353]
We present a layer-wise model fusion algorithm for neural networks.
We show that this can successfully yield "one-shot" knowledge transfer between neural networks trained on heterogeneous non-i.i.d. data.
arXiv Detail & Related papers (2019-10-12T22:07:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.