Biologically Inspired Swarm Dynamic Target Tracking and Obstacle Avoidance
- URL: http://arxiv.org/abs/2410.11237v1
- Date: Tue, 15 Oct 2024 03:47:09 GMT
- Title: Biologically Inspired Swarm Dynamic Target Tracking and Obstacle Avoidance
- Authors: Lucas Page,
- Abstract summary: This study proposes a novel artificial intelligence (AI) driven flight computer to track dynamic targets using a distributed drone swarm for military applications.
The controller integrates a fuzzy interface, a neural network enabling rapid adaption, predictive capability and multi-agent solving.
- Score: 0.0
- License:
- Abstract: This study proposes a novel artificial intelligence (AI) driven flight computer, integrating an online free-retraining-prediction model, a swarm control, and an obstacle avoidance strategy, to track dynamic targets using a distributed drone swarm for military applications. To enable dynamic target tracking the swarm requires a trajectory prediction capability to achieve intercept allowing for the tracking of rapid maneuvers and movements while maintaining efficient path planning. Traditional predicative methods such as curve fitting or Long ShortTerm Memory (LSTM) have low robustness and struggle with dynamic target tracking in the short term due to slow convergence of single agent-based trajectory prediction and often require extensive offline training or tuning to be effective. Consequently, this paper introduces a novel robust adaptive bidirectional fuzzy brain emotional learning prediction (BFBEL-P) methodology to address these challenges. The controller integrates a fuzzy interface, a neural network enabling rapid adaption, predictive capability and multi-agent solving enabling multiple solutions to be aggregated to achieve rapid convergence times and high accuracy in both the short and long term. This was verified through the use of numerical simulations seeing complex trajectory being predicted and tracked by a swarm of drones. These simulations show improved adaptability and accuracy to state of the art methods in the short term and strong results over long time domains, enabling accurate swarm target tracking and predictive capability.
Related papers
- Efficient Motion Prediction: A Lightweight & Accurate Trajectory Prediction Model With Fast Training and Inference Speed [56.27022390372502]
We propose a new efficient motion prediction model, which achieves highly competitive benchmark results while training only a few hours on a single GPU.
Its low inference latency makes it particularly suitable for deployment in autonomous applications with limited computing resources.
arXiv Detail & Related papers (2024-09-24T14:58:27Z) - ADM: Accelerated Diffusion Model via Estimated Priors for Robust Motion Prediction under Uncertainties [6.865435680843742]
We propose a novel diffusion-based, acceleratable framework that adeptly predicts future trajectories of agents with enhanced resistance to noise.
Our method meets the rigorous real-time operational standards essential for autonomous vehicles.
It achieves significant improvement in multi-agent motion prediction on the Argoverse 1 motion forecasting dataset.
arXiv Detail & Related papers (2024-05-01T18:16:55Z) - Exploring Dynamic Transformer for Efficient Object Tracking [58.120191254379854]
We propose DyTrack, a dynamic transformer framework for efficient tracking.
DyTrack automatically learns to configure proper reasoning routes for various inputs, gaining better utilization of the available computational budget.
Experiments on multiple benchmarks demonstrate that DyTrack achieves promising speed-precision trade-offs with only a single model.
arXiv Detail & Related papers (2024-03-26T12:31:58Z) - PNAS-MOT: Multi-Modal Object Tracking with Pareto Neural Architecture Search [64.28335667655129]
Multiple object tracking is a critical task in autonomous driving.
As tracking accuracy improves, neural networks become increasingly complex, posing challenges for their practical application in real driving scenarios due to the high level of latency.
In this paper, we explore the use of the neural architecture search (NAS) methods to search for efficient architectures for tracking, aiming for low real-time latency while maintaining relatively high accuracy.
arXiv Detail & Related papers (2024-03-23T04:18:49Z) - A Safer Vision-based Autonomous Planning System for Quadrotor UAVs with
Dynamic Obstacle Trajectory Prediction and Its Application with LLMs [6.747468447244154]
This paper proposes a vision-based planning system that combines tracking and trajectory prediction of dynamic obstacles to achieve efficient and reliable autonomous flight.
We conduct experiments in both simulation and real-world environments, and the results indicate that our approach can successfully detect and avoid obstacles in dynamic environments in real-time.
arXiv Detail & Related papers (2023-11-21T08:09:00Z) - Short vs. Long-term Coordination of Drones: When Distributed Optimization Meets Deep Reinforcement Learning [0.9208007322096532]
Swarms of autonomous interactive drones can provide compelling sensing capabilities in Smart City applications, such as traffic monitoring.
This paper focuses on the task assignment problem for large-scaletemporal- sensing by a drone swarm.
It proposes a novel synergetic optimization approach by integrating long-term DRL and short-term collective learning.
arXiv Detail & Related papers (2023-11-16T12:28:31Z) - MotionTrack: Learning Robust Short-term and Long-term Motions for
Multi-Object Tracking [56.92165669843006]
We propose MotionTrack, which learns robust short-term and long-term motions in a unified framework to associate trajectories from a short to long range.
For dense crowds, we design a novel Interaction Module to learn interaction-aware motions from short-term trajectories, which can estimate the complex movement of each target.
For extreme occlusions, we build a novel Refind Module to learn reliable long-term motions from the target's history trajectory, which can link the interrupted trajectory with its corresponding detection.
arXiv Detail & Related papers (2023-03-18T12:38:33Z) - AdvDO: Realistic Adversarial Attacks for Trajectory Prediction [87.96767885419423]
Trajectory prediction is essential for autonomous vehicles to plan correct and safe driving behaviors.
We devise an optimization-based adversarial attack framework to generate realistic adversarial trajectories.
Our attack can lead an AV to drive off road or collide into other vehicles in simulation.
arXiv Detail & Related papers (2022-09-19T03:34:59Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
Accurately modeling quadrotor's system dynamics is critical for guaranteeing agile, safe, and stable navigation.
We present a novel Physics-Inspired Temporal Convolutional Network (PI-TCN) approach to learning quadrotor's system dynamics purely from robot experience.
Our approach combines the expressive power of sparse temporal convolutions and dense feed-forward connections to make accurate system predictions.
arXiv Detail & Related papers (2022-06-07T13:51:35Z) - Nonlinear Model Based Guidance with Deep Learning Based Target
Trajectory Prediction Against Aerial Agile Attack Patterns [0.0]
We propose a novel missile guidance algorithm that combines deep learning based trajectory prediction with nonlinear model predictive control.
Our method, named nonlinear model based predictive control with target acceleration predictions (NMPC-TAP), significantly outperforms compared approaches in terms of miss distance.
arXiv Detail & Related papers (2021-04-06T13:20:36Z) - Spatio-Temporal Graph Dual-Attention Network for Multi-Agent Prediction
and Tracking [23.608125748229174]
We propose a generic generative neural system for multi-agent trajectory prediction involving heterogeneous agents.
The proposed system is evaluated on three public benchmark datasets for trajectory prediction.
arXiv Detail & Related papers (2021-02-18T02:25:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.