PNAS-MOT: Multi-Modal Object Tracking with Pareto Neural Architecture Search
- URL: http://arxiv.org/abs/2403.15712v1
- Date: Sat, 23 Mar 2024 04:18:49 GMT
- Title: PNAS-MOT: Multi-Modal Object Tracking with Pareto Neural Architecture Search
- Authors: Chensheng Peng, Zhaoyu Zeng, Jinling Gao, Jundong Zhou, Masayoshi Tomizuka, Xinbing Wang, Chenghu Zhou, Nanyang Ye,
- Abstract summary: Multiple object tracking is a critical task in autonomous driving.
As tracking accuracy improves, neural networks become increasingly complex, posing challenges for their practical application in real driving scenarios due to the high level of latency.
In this paper, we explore the use of the neural architecture search (NAS) methods to search for efficient architectures for tracking, aiming for low real-time latency while maintaining relatively high accuracy.
- Score: 64.28335667655129
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multiple object tracking is a critical task in autonomous driving. Existing works primarily focus on the heuristic design of neural networks to obtain high accuracy. As tracking accuracy improves, however, neural networks become increasingly complex, posing challenges for their practical application in real driving scenarios due to the high level of latency. In this paper, we explore the use of the neural architecture search (NAS) methods to search for efficient architectures for tracking, aiming for low real-time latency while maintaining relatively high accuracy. Another challenge for object tracking is the unreliability of a single sensor, therefore, we propose a multi-modal framework to improve the robustness. Experiments demonstrate that our algorithm can run on edge devices within lower latency constraints, thus greatly reducing the computational requirements for multi-modal object tracking while keeping lower latency.
Related papers
- OneTrack-M: A multitask approach to transformer-based MOT models [0.0]
Multi-Object Tracking (MOT) is a critical problem in computer vision.
OneTrack-M is a transformer-based MOT model designed to enhance tracking computational efficiency and accuracy.
arXiv Detail & Related papers (2025-02-06T20:02:06Z) - CREST: An Efficient Conjointly-trained Spike-driven Framework for Event-based Object Detection Exploiting Spatiotemporal Dynamics [7.696109414724968]
Spiking neural networks (SNNs) are promising for event-based object recognition and detection.
Existing SNN frameworks often fail to handle multi-scaletemporal features, leading to increased data redundancy and reduced accuracy.
We propose CREST, a novel conjointly-trained spike-driven framework to exploit event-based object detection.
arXiv Detail & Related papers (2024-12-17T04:33:31Z) - Temporal Correlation Meets Embedding: Towards a 2nd Generation of JDE-based Real-Time Multi-Object Tracking [52.04679257903805]
Joint Detection and Embedding (JDE) trackers have demonstrated excellent performance in Multi-Object Tracking (MOT) tasks.
Our tracker, named TCBTrack, achieves state-of-the-art performance on multiple public benchmarks.
arXiv Detail & Related papers (2024-07-19T07:48:45Z) - Exploring Dynamic Transformer for Efficient Object Tracking [58.120191254379854]
We propose DyTrack, a dynamic transformer framework for efficient tracking.
DyTrack automatically learns to configure proper reasoning routes for various inputs, gaining better utilization of the available computational budget.
Experiments on multiple benchmarks demonstrate that DyTrack achieves promising speed-precision trade-offs with only a single model.
arXiv Detail & Related papers (2024-03-26T12:31:58Z) - Faster and Simpler Siamese Network for Single Object Tracking [9.365739363728983]
Single object tracking (SOT) is one of the most important tasks in computer vision.
Siamese networks have been proposed and perform better than most of the traditional methods.
Most of these methods could only meet the needs of real-time object tracking in ideal environments.
arXiv Detail & Related papers (2021-05-07T03:37:19Z) - MS-RANAS: Multi-Scale Resource-Aware Neural Architecture Search [94.80212602202518]
We propose Multi-Scale Resource-Aware Neural Architecture Search (MS-RANAS)
We employ a one-shot architecture search approach in order to obtain a reduced search cost.
We achieve state-of-the-art results in terms of accuracy-speed trade-off.
arXiv Detail & Related papers (2020-09-29T11:56:01Z) - LC-NAS: Latency Constrained Neural Architecture Search for Point Cloud
Networks [73.78551758828294]
LC-NAS is able to find state-of-the-art architectures for point cloud classification with minimal computational cost.
We show how our searched architectures achieve any desired latency with a reasonably low drop in accuracy.
arXiv Detail & Related papers (2020-08-24T10:30:21Z) - Object Tracking through Residual and Dense LSTMs [67.98948222599849]
Deep learning-based trackers based on LSTMs (Long Short-Term Memory) recurrent neural networks have emerged as a powerful alternative.
DenseLSTMs outperform Residual and regular LSTM, and offer a higher resilience to nuisances.
Our case study supports the adoption of residual-based RNNs for enhancing the robustness of other trackers.
arXiv Detail & Related papers (2020-06-22T08:20:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.