論文の概要: Tackling Dimensional Collapse toward Comprehensive Universal Domain Adaptation
- arxiv url: http://arxiv.org/abs/2410.11271v2
- Date: Tue, 11 Feb 2025 07:18:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-12 14:03:44.403703
- Title: Tackling Dimensional Collapse toward Comprehensive Universal Domain Adaptation
- Title(参考訳): 包括的Universal Domain Adaptationに向けた次元分解
- Authors: Hung-Chieh Fang, Po-Yi Lu, Hsuan-Tien Lin,
- Abstract要約: Universal Domain Adaptation (UniDA)は、共有サブセットを除いて、ターゲットクラスがソースクラスと任意に異なる可能性のある、教師なしのドメイン適応に対処する。
重要なアプローチである部分的ドメインマッチング(PDM)は、共有クラスのみをアライメントするが、多くのソースクラスがターゲットドメインに存在しない極端なケースで苦労し、ソースデータのみをトレーニングする最も単純なベースラインを過小評価する。
本稿では,学習表現の内在的構造を維持するために,ラベルのない対象データに基づいて,現代の自己教師学習(SSL)におけるアライメントと統一性を共同で活用することを提案する。
- 参考スコア(独自算出の注目度): 11.875619863954238
- License:
- Abstract: Universal Domain Adaptation (UniDA) addresses unsupervised domain adaptation where target classes may differ arbitrarily from source ones, except for a shared subset. An important approach, partial domain matching (PDM), aligns only shared classes but struggles in extreme cases where many source classes are absent in the target domain, underperforming the most naive baseline that trains on only source data. In this work, we identify that the failure of PDM for extreme UniDA stems from dimensional collapse (DC) in target representations. To address target DC, we propose to jointly leverage the alignment and uniformity techniques in modern self-supervised learning (SSL) on the unlabeled target data to preserve the intrinsic structure of the learned representations. Our experimental results confirm that SSL consistently advances PDM and delivers new state-of-the-art results across a broader benchmark of UniDA scenarios with different portions of shared classes, representing a crucial step toward truly comprehensive UniDA.
- Abstract(参考訳): Universal Domain Adaptation (UniDA)は、共有サブセットを除いて、ターゲットクラスがソースクラスと任意に異なる可能性のある、教師なしのドメイン適応に対処する。
重要なアプローチである部分的ドメインマッチング(PDM)は、共有クラスのみをアライメントするが、多くのソースクラスがターゲットドメインに存在しない極端なケースで苦労し、ソースデータのみをトレーニングする最も単純なベースラインを過小評価する。
本研究では,極端UniDAにおけるPDMの故障が,対象表現における次元的崩壊(DC)に起因することを確認した。
対象DCに対処するために,学習表現の内在的構造を保存するために,ラベルのない対象データ上での現代の自己教師付き学習(SSL)におけるアライメントと統一性を共同で活用することを提案する。
実験の結果、SSLはPDMを一貫して進歩させ、共有クラスの異なる部分を持つUniDAシナリオのより広範なベンチマークで新しい最先端結果を提供し、真に包括的なUniDAへの重要な一歩であることを確認した。
関連論文リスト
- Universal Semi-Supervised Domain Adaptation by Mitigating Common-Class Bias [16.4249819402209]
我々はUniversal Semi-Supervised Domain Adaptation (UniSSDA)を紹介する。
UniSSDAはUniversal Domain Adaptation (UniDA)とSemi-Supervised Domain Adaptation (SSDA)の交差点にある
疑似ラベルによる共通クラスバイアスの強化を抑えるための,事前誘導型擬似ラベル改善戦略を提案する。
論文 参考訳(メタデータ) (2024-03-17T14:43:47Z) - Divide and Contrast: Source-free Domain Adaptation via Adaptive
Contrastive Learning [122.62311703151215]
Divide and Contrast (DaC) は、それぞれの制限を回避しつつ、両方の世界の善良な端を接続することを目的としている。
DaCは、ターゲットデータをソースライクなサンプルとターゲット固有なサンプルに分割する。
さらに、ソースライクなドメインと、メモリバンクベースの最大平均離散性(MMD)損失を用いて、ターゲット固有のサンプルとを整合させて、分散ミスマッチを低減する。
論文 参考訳(メタデータ) (2022-11-12T09:21:49Z) - Semi-supervised Domain Adaptation for Semantic Segmentation [3.946367634483361]
セマンティックセグメンテーションにおけるクロスドメインとイントラドメインのギャップに対処する2段階の半教師付き二重ドメイン適応(SSDDA)手法を提案する。
提案手法は,2つの共通合成-実合成セマンティックセグメンテーションベンチマークにおいて,最先端の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-10-20T16:13:00Z) - Domain Adaptive Semantic Segmentation without Source Data [50.18389578589789]
モデルがソースドメイン上で事前学習されていることを前提として、ソースデータのないドメイン適応セマンティックセマンティックセマンティックセマンティクスについて検討する。
本稿では,この課題に対して,肯定的学習と否定的学習という2つの要素を用いた効果的な枠組みを提案する。
私たちのフレームワークは、パフォーマンスをさらに向上するために、他のメソッドに簡単に実装および組み込むことができます。
論文 参考訳(メタデータ) (2021-10-13T04:12:27Z) - Joint Distribution Alignment via Adversarial Learning for Domain
Adaptive Object Detection [11.262560426527818]
教師なしのドメイン適応オブジェクト検出は、リッチラベル付きデータで訓練された元のソースドメインから、ラベルなしデータで新しいターゲットドメインに適応することを目的としている。
近年、主流のアプローチは、敵対的学習を通じてこのタスクを実行するが、それでも2つの制限に悩まされている。
上記の課題に対処するために,JADF(Joint Adaptive Detection framework)を提案する。
論文 参考訳(メタデータ) (2021-09-19T00:27:08Z) - CLDA: Contrastive Learning for Semi-Supervised Domain Adaptation [1.2691047660244335]
Unsupervised Domain Adaptation (UDA) は、ラベル付きソース分布とラベル付きターゲット分布との整合を目標とし、ドメイン不変な予測モデルを得る。
半教師付きドメイン適応(CLDA)のためのコントラスト学習フレームワークを提案する。
CLDAは上記のすべてのデータセットに対して最先端の結果を達成する。
論文 参考訳(メタデータ) (2021-06-30T20:23:19Z) - Instance Level Affinity-Based Transfer for Unsupervised Domain
Adaptation [74.71931918541748]
ILA-DAと呼ばれる適応中のソースからターゲットへの転送に対するインスタンス親和性に基づく基準を提案する。
まず、ソースとターゲットをまたいだ類似および異種サンプルを抽出し、マルチサンプルのコントラスト損失を利用してドメインアライメントプロセスを駆動する信頼性が高く効率的な手法を提案する。
ILA-DAの有効性は、様々なベンチマークデータセットに対する一般的なドメイン適応手法よりも精度が一貫した改善を観察することによって検証する。
論文 参考訳(メタデータ) (2021-04-03T01:33:14Z) - Inferring Latent Domains for Unsupervised Deep Domain Adaptation [54.963823285456925]
Unsupervised Domain Adaptation (UDA)は、ラベル付きデータが利用できないターゲットドメインでモデルを学習する問題を指す。
本稿では,視覚データセット中の潜在ドメインを自動的に発見することにより,udaの問題に対処する新しい深層アーキテクチャを提案する。
提案手法を公開ベンチマークで評価し,最先端のドメイン適応手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-03-25T14:33:33Z) - Discriminative Cross-Domain Feature Learning for Partial Domain
Adaptation [70.45936509510528]
部分的なドメイン適応は、より大きく多様なソースドメインからの知識を、より少ないクラス数でより小さなターゲットドメインに適応させることを目的としています。
ドメイン適応の最近の実践は、ターゲットドメインの擬似ラベルを組み込むことで、効果的な特徴を抽出する。
ターゲットデータを少数のソースデータのみにアライメントすることが不可欠である。
論文 参考訳(メタデータ) (2020-08-26T03:18:53Z) - Towards Fair Cross-Domain Adaptation via Generative Learning [50.76694500782927]
ドメイン適応(DA)は、よくラベル付けされたソースドメイン上でトレーニングされたモデルを、異なる分散に横たわる未ラベルのターゲットドメインに適応することを目的としています。
本研究では,新規な生成的Few-shot Cross-Domain Adaptation (GFCA) アルゴリズムを開発した。
論文 参考訳(メタデータ) (2020-03-04T23:25:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。