Tackling Dimensional Collapse toward Comprehensive Universal Domain Adaptation
- URL: http://arxiv.org/abs/2410.11271v2
- Date: Tue, 11 Feb 2025 07:18:41 GMT
- Title: Tackling Dimensional Collapse toward Comprehensive Universal Domain Adaptation
- Authors: Hung-Chieh Fang, Po-Yi Lu, Hsuan-Tien Lin,
- Abstract summary: Universal Domain Adaptation (UniDA) addresses unsupervised domain adaptation where target classes may differ arbitrarily from source ones, except for a shared subset.
An important approach, partial domain matching (PDM), aligns only shared classes but struggles in extreme cases where many source classes are absent in the target domain, underperforming the most naive baseline that trains on only source data.
We propose to jointly leverage the alignment and uniformity techniques in modern self-supervised learning (SSL) on the unlabeled target data to preserve the intrinsic structure of the learned representations.
- Score: 11.875619863954238
- License:
- Abstract: Universal Domain Adaptation (UniDA) addresses unsupervised domain adaptation where target classes may differ arbitrarily from source ones, except for a shared subset. An important approach, partial domain matching (PDM), aligns only shared classes but struggles in extreme cases where many source classes are absent in the target domain, underperforming the most naive baseline that trains on only source data. In this work, we identify that the failure of PDM for extreme UniDA stems from dimensional collapse (DC) in target representations. To address target DC, we propose to jointly leverage the alignment and uniformity techniques in modern self-supervised learning (SSL) on the unlabeled target data to preserve the intrinsic structure of the learned representations. Our experimental results confirm that SSL consistently advances PDM and delivers new state-of-the-art results across a broader benchmark of UniDA scenarios with different portions of shared classes, representing a crucial step toward truly comprehensive UniDA.
Related papers
- Universal Semi-Supervised Domain Adaptation by Mitigating Common-Class Bias [16.4249819402209]
We introduce Universal Semi-Supervised Domain Adaptation (UniSSDA)
UniSSDA is at the intersection of Universal Domain Adaptation (UniDA) and Semi-Supervised Domain Adaptation (SSDA)
We propose a new prior-guided pseudo-label refinement strategy to reduce the reinforcement of common-class bias due to pseudo-labeling.
arXiv Detail & Related papers (2024-03-17T14:43:47Z) - MLNet: Mutual Learning Network with Neighborhood Invariance for
Universal Domain Adaptation [70.62860473259444]
Universal domain adaptation (UniDA) is a practical but challenging problem.
Existing UniDA methods may suffer from the problems of overlooking intra-domain variations in the target domain.
We propose a novel Mutual Learning Network (MLNet) with neighborhood invariance for UniDA.
arXiv Detail & Related papers (2023-12-13T03:17:34Z) - SUG: Single-dataset Unified Generalization for 3D Point Cloud
Classification [44.27324696068285]
We propose a Single-dataset Unified Generalization (SUG) framework to alleviate the unforeseen domain differences faced by a well-trained source model.
Specifically, we first design a Multi-grained Sub-domain Alignment (MSA) method, which can constrain the learned representations to be domain-agnostic and discriminative.
Then, a Sample-level Domain-aware Attention (SDA) strategy is presented, which can selectively enhance easy-to-adapt samples from different sub-domains.
arXiv Detail & Related papers (2023-05-16T04:36:04Z) - Dynamic Instance Domain Adaptation [109.53575039217094]
Most studies on unsupervised domain adaptation assume that each domain's training samples come with domain labels.
We develop a dynamic neural network with adaptive convolutional kernels to generate instance-adaptive residuals to adapt domain-agnostic deep features to each individual instance.
Our model, dubbed DIDA-Net, achieves state-of-the-art performance on several commonly used single-source and multi-source UDA datasets.
arXiv Detail & Related papers (2022-03-09T20:05:54Z) - Decompose to Adapt: Cross-domain Object Detection via Feature
Disentanglement [79.2994130944482]
We design a Domain Disentanglement Faster-RCNN (DDF) to eliminate the source-specific information in the features for detection task learning.
Our DDF method facilitates the feature disentanglement at the global and local stages, with a Global Triplet Disentanglement (GTD) module and an Instance Similarity Disentanglement (ISD) module.
By outperforming state-of-the-art methods on four benchmark UDA object detection tasks, our DDF method is demonstrated to be effective with wide applicability.
arXiv Detail & Related papers (2022-01-06T05:43:01Z) - Semi-supervised Domain Adaptive Structure Learning [72.01544419893628]
Semi-supervised domain adaptation (SSDA) is a challenging problem requiring methods to overcome both 1) overfitting towards poorly annotated data and 2) distribution shift across domains.
We introduce an adaptive structure learning method to regularize the cooperation of SSL and DA.
arXiv Detail & Related papers (2021-12-12T06:11:16Z) - Joint Distribution Alignment via Adversarial Learning for Domain
Adaptive Object Detection [11.262560426527818]
Unsupervised domain adaptive object detection aims to adapt a well-trained detector from its original source domain with rich labeled data to a new target domain with unlabeled data.
Recently, mainstream approaches perform this task through adversarial learning, yet still suffer from two limitations.
We propose a joint adaptive detection framework (JADF) to address the above challenges.
arXiv Detail & Related papers (2021-09-19T00:27:08Z) - CLDA: Contrastive Learning for Semi-Supervised Domain Adaptation [1.2691047660244335]
Unsupervised Domain Adaptation (UDA) aims to align the labeled source distribution with the unlabeled target distribution to obtain domain invariant predictive models.
We propose Contrastive Learning framework for semi-supervised Domain Adaptation (CLDA) that attempts to bridge the intra-domain gap.
CLDA achieves state-of-the-art results on all the above datasets.
arXiv Detail & Related papers (2021-06-30T20:23:19Z) - Dual Distribution Alignment Network for Generalizable Person
Re-Identification [174.36157174951603]
Domain generalization (DG) serves as a promising solution to handle person Re-Identification (Re-ID)
We present a Dual Distribution Alignment Network (DDAN) which handles this challenge by selectively aligning distributions of multiple source domains.
We evaluate our DDAN on a large-scale Domain Generalization Re-ID (DG Re-ID) benchmark.
arXiv Detail & Related papers (2020-07-27T00:08:07Z) - Dual Mixup Regularized Learning for Adversarial Domain Adaptation [19.393393465837377]
We propose a dual mixup regularized learning (DMRL) method for unsupervised domain adaptation.
DMRL guides the classifier in enhancing consistent predictions in-between samples, and enriches the intrinsic structures of the latent space.
A series of empirical studies on four domain adaptation benchmarks demonstrate that our approach can achieve the state-of-the-art.
arXiv Detail & Related papers (2020-07-07T00:24:14Z) - Alleviating Semantic-level Shift: A Semi-supervised Domain Adaptation
Method for Semantic Segmentation [97.8552697905657]
A key challenge of this task is how to alleviate the data distribution discrepancy between the source and target domains.
We propose Alleviating Semantic-level Shift (ASS), which can successfully promote the distribution consistency from both global and local views.
We apply our ASS to two domain adaptation tasks, from GTA5 to Cityscapes and from Synthia to Cityscapes.
arXiv Detail & Related papers (2020-04-02T03:25:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.