論文の概要: Process Reward Model with Q-Value Rankings
- arxiv url: http://arxiv.org/abs/2410.11287v1
- Date: Tue, 15 Oct 2024 05:10:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-16 14:04:10.059138
- Title: Process Reward Model with Q-Value Rankings
- Title(参考訳): Q値ランキング付きプロセスリワードモデル
- Authors: Wendi Li, Yixuan Li,
- Abstract要約: プロセス・リワード・モデリング(PRM)は複雑な推論と意思決定に不可欠である。
本稿では,マルコフ決定プロセスの文脈でPRMを再定義する新しいフレームワークであるProcess Q-value Model(PQM)を紹介する。
PQMは、新しい比較損失関数に基づいてQ値ランキングを最適化し、シーケンシャルな決定の中で複雑なダイナミクスをキャプチャするモデルの能力を向上する。
- 参考スコア(独自算出の注目度): 18.907163177605607
- License:
- Abstract: Process Reward Modeling (PRM) is critical for complex reasoning and decision-making tasks where the accuracy of intermediate steps significantly influences the overall outcome. Existing PRM approaches, primarily framed as classification problems, employ cross-entropy loss to independently evaluate each step's correctness. This method can lead to suboptimal reward distribution and does not adequately address the interdependencies among steps. To address these limitations, we introduce the Process Q-value Model (PQM), a novel framework that redefines PRM in the context of a Markov Decision Process. PQM optimizes Q-value rankings based on a novel comparative loss function, enhancing the model's ability to capture the intricate dynamics among sequential decisions. This approach provides a more granular and theoretically grounded methodology for process rewards. Our extensive empirical evaluations across various sampling policies, language model backbones, and multi-step reasoning benchmarks show that PQM outperforms classification-based PRMs. The effectiveness of the comparative loss function is highlighted in our comprehensive ablation studies, confirming PQM's practical efficacy and theoretical advantage.
- Abstract(参考訳): プロセス・リワード・モデリング(Process Reward Modeling, PRM)は、中間ステップの精度が全体的な結果に大きな影響を及ぼす複雑な推論や意思決定のタスクにおいて重要である。
既存のPRMアプローチは、主に分類問題として構成され、各ステップの正しさを独立に評価するためにクロスエントロピー損失を用いる。
この方法では、最適以下の報酬分布を導出することができ、ステップ間の相互依存性を適切に解決することができない。
これらの制約に対処するため、マルコフ決定プロセスの文脈でPRMを再定義する新しいフレームワークであるProcess Q-value Model (PQM)を導入する。
PQMは、新しい比較損失関数に基づいてQ値ランキングを最適化し、シーケンシャルな決定の中で複雑なダイナミクスをキャプチャするモデルの能力を向上する。
このアプローチは、プロセス報酬のよりきめ細やかな理論的な方法論を提供する。
各種サンプリングポリシー,言語モデルバックボーン,多段階推論ベンチマークを対象とし,PQMがPRMよりも優れていることを示す。
比較損失関数の有効性を包括的アブレーション研究で明らかにし,PQMの実用的有効性と理論的優位性を確認した。
関連論文リスト
- AdaptiveStep: Automatically Dividing Reasoning Step through Model Confidence [29.551802573731305]
本稿では,モデルが次の単語を予測する自信に基づいて推論ステップを分割する手法であるAdaptiveStepを提案する。
数理推論およびコード生成タスクにおいて,AdaptiveStep-trained PRMを用いた実験により実効性を示す。
論文 参考訳(メタデータ) (2025-02-19T18:35:55Z) - ReARTeR: Retrieval-Augmented Reasoning with Trustworthy Process Rewarding [25.329712997545794]
ReARTeR(Retrieval-Augmented Reasoning)を提案する。
ReARTeRは、ポストトレーニングとテストタイムスケーリングを通じて、RAGシステムの推論能力を向上する。
マルチステップ推論ベンチマークの実験結果から,大幅な改善が示された。
論文 参考訳(メタデータ) (2025-01-14T05:56:26Z) - The Lessons of Developing Process Reward Models in Mathematical Reasoning [62.165534879284735]
Process Reward Models (PRM) は、推論プロセスにおける中間エラーを特定し、緩和することを目的としている。
我々は,モンテカルロ (MC) 推定とLarge Language Models (LLM) を効果的に統合するコンセンサスフィルタリング機構を開発した。
私たちは、既存のオープンソース代替品よりも優れた、最先端のPRMを新たにリリースしています。
論文 参考訳(メタデータ) (2025-01-13T13:10:16Z) - PRMBench: A Fine-grained and Challenging Benchmark for Process-Level Reward Models [28.74956741932006]
PRMベンチ(PRM Bench)は, PRMの微細な誤差検出機能を評価するための, プロセスレベルのベンチマークである。
PRMBenchは、6,216の慎重に設計された問題と83,456のステップレベルラベルで構成され、複数の次元にわたるモデルを評価する。
論文 参考訳(メタデータ) (2025-01-06T16:31:45Z) - Entropy-Regularized Process Reward Model [30.279394036823092]
大規模言語モデル(LLM)は、複雑な多段階推論を行う上で有望であるが、数学的推論に苦慮し続けている。
KL規則化マルコフ決定プロセス(MDP)を統合したエントロピー規則化プロセス報酬モデル(ER-PRM)を提案する。
MATHとGSM8Kベンチマークの実証実験により、ER-PRMは既存のプロセス報酬モデルより一貫して優れていることが示された。
論文 参考訳(メタデータ) (2024-12-15T01:09:23Z) - Prior Constraints-based Reward Model Training for Aligning Large Language Models [58.33118716810208]
本稿では,この問題を解決するために,事前制約に基づくリワードモデル(PCRM)のトレーニング手法を提案する。
PCRMは、前回の制約、特に各比較ペアの出力間の長さ比とコサイン類似性を、最適化の規模を調節しスコアマージンを制御するための報酬モデルトレーニングに組み入れている。
実験結果から,PCRMは報酬スコアのスケーリングを効果的に抑制することによりアライメント性能を著しく向上することが示された。
論文 参考訳(メタデータ) (2024-04-01T07:49:11Z) - Let's reward step by step: Step-Level reward model as the Navigators for
Reasoning [64.27898739929734]
Process-Supervised Reward Model (PRM)は、トレーニングフェーズ中にステップバイステップのフィードバックをLLMに提供する。
LLMの探索経路を最適化するために,PRMからのステップレベルのフィードバックを応用した欲求探索アルゴリズムを提案する。
提案手法の汎用性を探るため,コーディングタスクのステップレベル報酬データセットを自動生成する手法を開発し,コード生成タスクにおける同様の性能向上を観察する。
論文 参考訳(メタデータ) (2023-10-16T05:21:50Z) - Provably Efficient UCB-type Algorithms For Learning Predictive State
Representations [55.00359893021461]
逐次決定問題は、予測状態表現(PSR)によってモデル化された低ランク構造が認められる場合、統計的に学習可能である
本稿では,推定モデルと実モデル間の全変動距離を上限とする新しいボーナス項を特徴とする,PSRに対する最初のUCB型アプローチを提案する。
PSRに対する既存のアプローチとは対照的に、UCB型アルゴリズムは計算的トラクタビリティ、最優先の準最適ポリシー、モデルの精度が保証される。
論文 参考訳(メタデータ) (2023-07-01T18:35:21Z) - Model-based Multi-agent Policy Optimization with Adaptive Opponent-wise
Rollouts [52.844741540236285]
マルチエージェント強化学習(MARL)におけるモデルベース手法について検討する。
AORPO(Adaptive Opponent-wise Rollout Policy)と呼ばれる新しい分散型モデルベースのMARL法を提案する。
論文 参考訳(メタデータ) (2021-05-07T16:20:22Z) - Stein Variational Model Predictive Control [130.60527864489168]
不確実性の下での意思決定は、現実の自律システムにとって極めて重要である。
モデル予測制御 (MPC) 法は, 複雑な分布を扱う場合, 適用範囲が限られている。
この枠組みが、挑戦的で非最適な制御問題における計画の成功に繋がることを示す。
論文 参考訳(メタデータ) (2020-11-15T22:36:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。