論文の概要: Open World Object Detection: A Survey
- arxiv url: http://arxiv.org/abs/2410.11301v1
- Date: Tue, 15 Oct 2024 05:46:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-16 14:02:19.697976
- Title: Open World Object Detection: A Survey
- Title(参考訳): Open World Object Detection: サーベイ
- Authors: Yiming Li, Yi Wang, Wenqian Wang, Dan Lin, Bingbing Li, Kim-Hui Yap,
- Abstract要約: オープンワールドオブジェクト検出(OWOD)は、この原則を適用して新しい知識を探求する、新たな研究分野である。
本稿では、OWODドメインの徹底的なレビューを行い、問題定義、ベンチマークデータセット、ソースコード、評価指標、既存手法の比較研究など、基本的な側面について述べる。
本稿では,現在のOWODアルゴリズムが直面する限界と課題に対処し,今後の研究の方向性を提案する。
- 参考スコア(独自算出の注目度): 16.839310066730533
- License:
- Abstract: Exploring new knowledge is a fundamental human ability that can be mirrored in the development of deep neural networks, especially in the field of object detection. Open world object detection (OWOD) is an emerging area of research that adapts this principle to explore new knowledge. It focuses on recognizing and learning from objects absent from initial training sets, thereby incrementally expanding its knowledge base when new class labels are introduced. This survey paper offers a thorough review of the OWOD domain, covering essential aspects, including problem definitions, benchmark datasets, source codes, evaluation metrics, and a comparative study of existing methods. Additionally, we investigate related areas like open set recognition (OSR) and incremental learning (IL), underlining their relevance to OWOD. Finally, the paper concludes by addressing the limitations and challenges faced by current OWOD algorithms and proposes directions for future research. To our knowledge, this is the first comprehensive survey of the emerging OWOD field with over one hundred references, marking a significant step forward for object detection technology. A comprehensive source code and benchmarks are archived and concluded at https://github.com/ArminLee/OWOD Review.
- Abstract(参考訳): 新しい知識を探求することは、ディープニューラルネットワーク、特に物体検出の分野の発展に反映できる基本的な人間の能力である。
オープンワールドオブジェクト検出(OWOD)は、この原則を適用して新しい知識を探求する、新たな研究分野である。
初期トレーニングセットから欠落したオブジェクトの認識と学習に重点を置いているため、新しいクラスラベルが導入されると、その知識ベースを段階的に拡大する。
本稿では、OWODドメインの詳細なレビューを行い、問題定義、ベンチマークデータセット、ソースコード、評価指標、既存手法の比較研究など、基本的な側面について述べる。
さらに,オープンセット認識 (OSR) やインクリメンタルラーニング (IL) などの関連分野について検討し,OWODとの関連性について概説する。
最後に,現在のOWODアルゴリズムが直面する限界と課題に対処し,今後の研究の方向性を提案する。
われわれの知る限り、この調査は、100以上の参照を持つOWOD分野の新興分野に関する初めての総合的な調査であり、オブジェクト検出技術にとって重要な一歩である。
包括的なソースコードとベンチマークはhttps://github.com/ArminLee/OWOD Reviewにまとめられている。
関連論文リスト
- Underwater Object Detection in the Era of Artificial Intelligence: Current, Challenge, and Future [119.88454942558485]
水中物体検出(UOD)は、水中の画像やビデオ中の物体を識別し、ローカライズすることを目的としている。
近年、人工知能(AI)に基づく手法、特に深層学習法は、UODにおいて有望な性能を示している。
論文 参考訳(メタデータ) (2024-10-08T00:25:33Z) - Few-Shot Object Detection: Research Advances and Challenges [15.916463121997843]
Few-shot Object Detection (FSOD)は、少数の学習技術とオブジェクト検出技術を組み合わせて、注釈付きサンプルに制限のある新しいオブジェクトに迅速に適応する。
本稿では,近年のFSOD分野の進歩を概観する包括的調査を行う。
論文 参考訳(メタデータ) (2024-04-07T03:37:29Z) - Semi-supervised Open-World Object Detection [74.95267079505145]
半教師付きオープンワールド検出(SS-OWOD)という,より現実的な定式化を導入する。
提案したSS-OWOD設定では,最先端OWOD検出器の性能が劇的に低下することが実証された。
我々は,MS COCO, PASCAL, Objects365, DOTAの4つのデータセットを用いた実験を行い, 提案手法の有効性を実証した。
論文 参考訳(メタデータ) (2024-02-25T07:12:51Z) - Remote Sensing Object Detection Meets Deep Learning: A Meta-review of
Challenges and Advances [51.70835702029498]
本稿では,ディープラーニングに基づくRSOD手法の最近の成果を概観する。
RSODの主な課題として,マルチスケールオブジェクト検出,回転オブジェクト検出,弱いオブジェクト検出,小さなオブジェクト検出,限られた監視を伴うオブジェクト検出の5つを挙げる。
また、RSODの分野で広く使用されているベンチマークデータセットと評価指標、およびRSODのアプリケーションシナリオについてもレビューする。
論文 参考訳(メタデータ) (2023-09-13T06:48:32Z) - Semi-supervised Object Detection: A Survey on Recent Research and
Progress [2.2398477810999817]
半教師対象検出(SSOD)は、高い研究価値と実践性のために、ますます注目されている。
本稿では,5つの側面からSSODのアプローチに関する包括的かつ最新の調査を紹介する。
論文 参考訳(メタデータ) (2023-06-25T02:54:03Z) - Addressing the Challenges of Open-World Object Detection [12.053132866404972]
OW-RCNNは、オープンワールドオブジェクト検出(OWOD)の3つの課題に対処するオープンワールドオブジェクト検出器である。
OW-RCNNは、MS-COCO上のオープンワールド評価プロトコルを用いて、新しい最先端技術を確立する。
論文 参考訳(メタデータ) (2023-03-27T06:11:28Z) - Detecting the open-world objects with the help of the Brain [20.00772846521719]
Open World Object Detection (OWOD) は、新しいコンピュータビジョンタスクである。
OWODアルゴリズムは、目に見えない、未知のオブジェクトを検出し、それを漸進的に学習することが期待されている。
我々は、未知のラベルを単に生成することで、VLをオープンワールド検出器のBrain'として活用することを提案する。
論文 参考訳(メタデータ) (2023-03-21T06:44:02Z) - Oriented Object Detection in Optical Remote Sensing Images using Deep Learning: A Survey [10.665235711722076]
オブジェクト指向物体検出は、リモートセンシングにおいて最も基本的で困難なタスクの1つである。
近年,ディープラーニング技術を用いたオブジェクト指向物体検出の進歩が目覚ましい。
論文 参考訳(メタデータ) (2023-02-21T06:31:53Z) - OW-DETR: Open-world Detection Transformer [90.56239673123804]
オープンワールドオブジェクト検出のための新しいエンドツーエンドトランスフォーマーベースのフレームワークOW-DETRを提案する。
OW-DETRは3つの専用コンポーネント、すなわち注目駆動の擬似ラベル、新規性分類、オブジェクトネススコアから構成される。
我々のモデルは、最近導入されたOWODアプローチであるOREよりも優れており、リコールの度合いは1.8%から3.3%である。
論文 参考訳(メタデータ) (2021-12-02T18:58:30Z) - Learning Open-World Object Proposals without Learning to Classify [110.30191531975804]
本研究では,各領域の位置と形状がどの接地トラストオブジェクトとどのように重なり合うかによって,各領域の目的性を純粋に推定する,分類不要なオブジェクトローカライゼーションネットワークを提案する。
この単純な戦略は一般化可能な対象性を学び、クロスカテゴリの一般化に関する既存の提案より優れている。
論文 参考訳(メタデータ) (2021-08-15T14:36:02Z) - Towards Open World Object Detection [68.79678648726416]
ORE: Open World Object Detectorは、対照的なクラスタリングとエネルギーベースの未知の識別に基づいている。
未知のインスタンスの識別と特徴付けは、インクリメンタルなオブジェクト検出設定における混乱を減らすのに役立ちます。
論文 参考訳(メタデータ) (2021-03-03T18:58:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。