Diffusion-Based Offline RL for Improved Decision-Making in Augmented ARC Task
- URL: http://arxiv.org/abs/2410.11324v1
- Date: Tue, 15 Oct 2024 06:48:27 GMT
- Title: Diffusion-Based Offline RL for Improved Decision-Making in Augmented ARC Task
- Authors: Yunho Kim, Jaehyun Park, Heejun Kim, Sejin Kim, Byung-Jun Lee, Sundong Kim,
- Abstract summary: We introduce an augmented offline RL dataset for Abstraction and Reasoning (SOLAR)
SOLAR enables the application of offline RL methods by offering sufficient experience data.
Our experiments demonstrate the effectiveness of the offline RL approach on a simple ARC task.
- Score: 10.046325073900297
- License:
- Abstract: Effective long-term strategies enable AI systems to navigate complex environments by making sequential decisions over extended horizons. Similarly, reinforcement learning (RL) agents optimize decisions across sequences to maximize rewards, even without immediate feedback. To verify that Latent Diffusion-Constrained Q-learning (LDCQ), a prominent diffusion-based offline RL method, demonstrates strong reasoning abilities in multi-step decision-making, we aimed to evaluate its performance on the Abstraction and Reasoning Corpus (ARC). However, applying offline RL methodologies to enhance strategic reasoning in AI for solving tasks in ARC is challenging due to the lack of sufficient experience data in the ARC training set. To address this limitation, we introduce an augmented offline RL dataset for ARC, called Synthesized Offline Learning Data for Abstraction and Reasoning (SOLAR), along with the SOLAR-Generator, which generates diverse trajectory data based on predefined rules. SOLAR enables the application of offline RL methods by offering sufficient experience data. We synthesized SOLAR for a simple task and used it to train an agent with the LDCQ method. Our experiments demonstrate the effectiveness of the offline RL approach on a simple ARC task, showing the agent's ability to make multi-step sequential decisions and correctly identify answer states. These results highlight the potential of the offline RL approach to enhance AI's strategic reasoning capabilities.
Related papers
- Enhancing Sample Efficiency and Exploration in Reinforcement Learning through the Integration of Diffusion Models and Proximal Policy Optimization [1.631115063641726]
We propose a framework that enhances PPO algorithms by incorporating a diffusion model to generate high-quality virtual trajectories for offline datasets.
Our contributions are threefold: we explore the potential of diffusion models in RL, particularly for offline datasets, extend the application of online RL to offline environments, and experimentally validate the performance improvements of PPO with diffusion models.
arXiv Detail & Related papers (2024-09-02T19:10:32Z) - D5RL: Diverse Datasets for Data-Driven Deep Reinforcement Learning [99.33607114541861]
We propose a new benchmark for offline RL that focuses on realistic simulations of robotic manipulation and locomotion environments.
Our proposed benchmark covers state-based and image-based domains, and supports both offline RL and online fine-tuning evaluation.
arXiv Detail & Related papers (2024-08-15T22:27:00Z) - GuideLight: "Industrial Solution" Guidance for More Practical Traffic Signal Control Agents [12.497518428553734]
Traffic signal control (TSC) methods based on reinforcement learning (RL) have proven superior to traditional methods.
However, most RL methods face difficulties when applied in the real world due to three factors: input, output, and the cycle-flow relation.
We propose to use industry solutions to guide the RL agent.
arXiv Detail & Related papers (2024-07-15T15:26:10Z) - ArCHer: Training Language Model Agents via Hierarchical Multi-Turn RL [80.10358123795946]
We develop a framework for building multi-turn RL algorithms for fine-tuning large language models.
Our framework adopts a hierarchical RL approach and runs two RL algorithms in parallel.
Empirically, we find that ArCHer significantly improves efficiency and performance on agent tasks.
arXiv Detail & Related papers (2024-02-29T18:45:56Z) - How Can LLM Guide RL? A Value-Based Approach [68.55316627400683]
Reinforcement learning (RL) has become the de facto standard practice for sequential decision-making problems by improving future acting policies with feedback.
Recent developments in large language models (LLMs) have showcased impressive capabilities in language understanding and generation, yet they fall short in exploration and self-improvement capabilities.
We develop an algorithm named LINVIT that incorporates LLM guidance as a regularization factor in value-based RL, leading to significant reductions in the amount of data needed for learning.
arXiv Detail & Related papers (2024-02-25T20:07:13Z) - Explaining RL Decisions with Trajectories [28.261758841898697]
Explanation is a key component for the adoption of reinforcement learning (RL) in many real-world decision-making problems.
We propose a complementary approach to these explanations, particularly for offline RL, where we attribute the policy decisions of a trained RL agent to the trajectories encountered by it during training.
arXiv Detail & Related papers (2023-05-06T15:26:22Z) - POAR: Efficient Policy Optimization via Online Abstract State
Representation Learning [6.171331561029968]
State Representation Learning (SRL) is proposed to specifically learn to encode task-relevant features from complex sensory data into low-dimensional states.
We introduce a new SRL prior called domain resemblance to leverage expert demonstration to improve SRL interpretations.
We empirically verify POAR to efficiently handle tasks in high dimensions and facilitate training real-life robots directly from scratch.
arXiv Detail & Related papers (2021-09-17T16:52:03Z) - Explainable Reinforcement Learning for Broad-XAI: A Conceptual Framework
and Survey [0.7366405857677226]
Reinforcement Learning (RL) methods provide a potential backbone for the cognitive model required for the development of Broad-XAI.
RL represents a suite of approaches that have had increasing success in solving a range of sequential decision-making problems.
This paper aims to introduce a conceptual framework, called the Causal XRL Framework (CXF), that unifies the current XRL research and uses RL as a backbone to the development of Broad-XAI.
arXiv Detail & Related papers (2021-08-20T05:18:50Z) - Offline Reinforcement Learning from Images with Latent Space Models [60.69745540036375]
offline reinforcement learning (RL) refers to the problem of learning policies from a static dataset of environment interactions.
We build on recent advances in model-based algorithms for offline RL, and extend them to high-dimensional visual observation spaces.
Our approach is both tractable in practice and corresponds to maximizing a lower bound of the ELBO in the unknown POMDP.
arXiv Detail & Related papers (2020-12-21T18:28:17Z) - Learning Dexterous Manipulation from Suboptimal Experts [69.8017067648129]
Relative Entropy Q-Learning (REQ) is a simple policy algorithm that combines ideas from successful offline and conventional RL algorithms.
We show how REQ is also effective for general off-policy RL, offline RL, and RL from demonstrations.
arXiv Detail & Related papers (2020-10-16T18:48:49Z) - EMaQ: Expected-Max Q-Learning Operator for Simple Yet Effective Offline
and Online RL [48.552287941528]
Off-policy reinforcement learning holds the promise of sample-efficient learning of decision-making policies.
In the offline RL setting, standard off-policy RL methods can significantly underperform.
We introduce Expected-Max Q-Learning (EMaQ), which is more closely related to the resulting practical algorithm.
arXiv Detail & Related papers (2020-07-21T21:13:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.