論文の概要: DRACO: A Denoising-Reconstruction Autoencoder for Cryo-EM
- arxiv url: http://arxiv.org/abs/2410.11373v2
- Date: Mon, 28 Oct 2024 14:08:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-29 16:01:09.183151
- Title: DRACO: A Denoising-Reconstruction Autoencoder for Cryo-EM
- Title(参考訳): DRACO: Cryo-EMのためのデノイング・リコンストラクション・オートエンコーダ
- Authors: Yingjun Shen, Haizhao Dai, Qihe Chen, Yan Zeng, Jiakai Zhang, Yuan Pei, Jingyi Yu,
- Abstract要約: DRACOは低温電子顕微鏡(cryo-EM)画像のためのデノイング・リコンストラクション・オートエンコーダである。
270,000本以上の映画やマイクログラフを含む、未処理の公開データベースから高品質で多様なデータセットを構築します。
DRACOは、最先端のベースラインと比較して、デノイング、マイクログラフキュレーション、パーティクルピッキングのタスクで最高のパフォーマンスを示す。
- 参考スコア(独自算出の注目度): 27.092844681711195
- License:
- Abstract: Foundation models in computer vision have demonstrated exceptional performance in zero-shot and few-shot tasks by extracting multi-purpose features from large-scale datasets through self-supervised pre-training methods. However, these models often overlook the severe corruption in cryogenic electron microscopy (cryo-EM) images by high-level noises. We introduce DRACO, a Denoising-Reconstruction Autoencoder for CryO-EM, inspired by the Noise2Noise (N2N) approach. By processing cryo-EM movies into odd and even images and treating them as independent noisy observations, we apply a denoising-reconstruction hybrid training scheme. We mask both images to create denoising and reconstruction tasks. For DRACO's pre-training, the quality of the dataset is essential, we hence build a high-quality, diverse dataset from an uncurated public database, including over 270,000 movies or micrographs. After pre-training, DRACO naturally serves as a generalizable cryo-EM image denoiser and a foundation model for various cryo-EM downstream tasks. DRACO demonstrates the best performance in denoising, micrograph curation, and particle picking tasks compared to state-of-the-art baselines.
- Abstract(参考訳): コンピュータビジョンのファンデーションモデルは、大規模データセットから自己教師付き事前学習手法を通じて多目的特徴を抽出することにより、ゼロショットおよび少数ショットタスクにおいて例外的な性能を示した。
しかし、これらのモデルは、高レベルノイズによる低温電子顕微鏡(cryo-EM)画像の深刻な破壊をしばしば見落としている。
本稿では,CryO-EMのためのDRACO(Denoising-Reconstruction Autoencoder)を紹介する。
本研究は,Creo-EMフィルムを奇異な画像に加工し,ノイズの独立な観察として扱うことにより,デノナイジング・リコンストラクションハイブリッドトレーニング手法を適用した。
両方のイメージをマスクして、デノベーションと再構築のタスクを作成します。
DRACOの事前トレーニングでは、データセットの品質が不可欠であるので、270,000以上の映画やマイクログラフを含む未処理のパブリックデータベースから、高品質で多様なデータセットを構築することができます。
プレトレーニング後、DRACOは自然に一般化可能なCryo-EMイメージデノイザおよび様々なCryo-EM下流タスクの基礎モデルとして機能する。
DRACOは、最先端のベースラインと比較して、デノイング、マイクログラフキュレーション、パーティクルピッキングのタスクで最高のパフォーマンスを示す。
関連論文リスト
- SeNM-VAE: Semi-Supervised Noise Modeling with Hierarchical Variational Autoencoder [13.453138169497903]
SeNM-VAEは、ペアとアンペアの両方のデータセットを利用して、現実的な劣化データを生成する半教師付きノイズモデリング手法である。
実世界の画像認識と超分解能タスクのためのペアトレーニングサンプルを生成するために,本手法を用いた。
提案手法は, 合成劣化画像の品質を, 他の不対とペアのノイズモデリング法と比較して向上させる。
論文 参考訳(メタデータ) (2024-03-26T09:03:40Z) - Reconstruct-and-Generate Diffusion Model for Detail-Preserving Image
Denoising [16.43285056788183]
再構成・生成拡散モデル(Reconstruct-and-Generate Diffusion Model, RnG)と呼ばれる新しい手法を提案する。
提案手法は, 再構成型復調ネットワークを利用して, 基礎となるクリーン信号の大半を復元する。
拡散アルゴリズムを用いて残留する高周波の詳細を生成し、視覚的品質を向上させる。
論文 参考訳(メタデータ) (2023-09-19T16:01:20Z) - FSID: Fully Synthetic Image Denoising via Procedural Scene Generation [12.277286575812441]
低レベルの視覚タスクに適した手続き型合成データ生成パイプラインとデータセットを開発する。
我々のUnrealエンジンベースの合成データパイプラインは、ランダムな3Dオブジェクト、材料、幾何学的変換の組み合わせで、大きなシーンをアルゴリズムで生成します。
そこで我々は,CNNに基づく復調モデルの訓練と検証を行い,この合成データのみを用いてトレーニングしたモデルが競争性のある復調結果が得られることを示した。
論文 参考訳(メタデータ) (2022-12-07T21:21:55Z) - Enhancing convolutional neural network generalizability via low-rank weight approximation [6.763245393373041]
十分なノイズ処理は、画像処理にとって重要な第一歩であることが多い。
ディープニューラルネットワーク(DNN)は画像のノイズ化に広く利用されている。
本研究では,タッカー低ランクテンソル近似に基づく自己教師付き画像復調フレームワークを提案する。
論文 参考訳(メタデータ) (2022-09-26T14:11:05Z) - Robust Deep Ensemble Method for Real-world Image Denoising [62.099271330458066]
そこで本研究では,実世界の画像認識のための単純なベイズディープアンサンブル(BDE)手法を提案する。
我々のBDEは、最先端の復調法よりも+0.28dBPSNRのゲインを達成している。
我々のBDEは他の画像復元タスクにも拡張でき、ベンチマークデータセット上で+0.30dB、+0.18dB、+0.12dB PSNRゲインを達成することができる。
論文 参考訳(メタデータ) (2022-06-08T06:19:30Z) - IDR: Self-Supervised Image Denoising via Iterative Data Refinement [66.5510583957863]
本稿では,最先端のデノナイジング性能を実現するために,教師なしの実用的なデノナイジング手法を提案する。
本手法では, 1つのノイズ画像と1つのノイズモデルしか必要とせず, 実際の生画像に容易にアクセス可能である。
実世界のアプリケーションにおける生画像復調性能を評価するため,500シーンのシーンを含む高品質な生画像データセットSenseNoise-500を構築した。
論文 参考訳(メタデータ) (2021-11-29T07:22:53Z) - Noise2Same: Optimizing A Self-Supervised Bound for Image Denoising [54.730707387866076]
本稿では,新しい自己教師型デノベーションフレームワークであるNoss2Sameを紹介する。
特にノイズ2Sameは、ノイズモデルに関するJ-不変性や余分な情報を必要としない。
以上の結果から,ノイズ2Sameは従来の自己監督型遮音法よりも優れていたことが示唆された。
論文 参考訳(メタデータ) (2020-10-22T18:12:26Z) - Unpaired Learning of Deep Image Denoising [80.34135728841382]
本稿では,自己指導型学習と知識蒸留を取り入れた2段階の手法を提案する。
自己教師型学習では,実雑音の画像のみから視覚を学習するための拡張型盲点ネットワーク(D-BSN)を提案する。
実験の結果,本手法は合成ノイズ画像と実世界のノイズ画像の両方で良好に機能することがわかった。
論文 参考訳(メタデータ) (2020-08-31T16:22:40Z) - Dual Adversarial Network: Toward Real-world Noise Removal and Noise
Generation [52.75909685172843]
実世界の画像ノイズ除去は、コンピュータビジョンにおける長年の課題である。
本稿では,ノイズ除去およびノイズ発生タスクに対処する新しい統合フレームワークを提案する。
本手法はクリーンノイズ画像対の連成分布を学習する。
論文 参考訳(メタデータ) (2020-07-12T09:16:06Z) - Reconstructing the Noise Manifold for Image Denoising [56.562855317536396]
本稿では,画像ノイズ空間の構造を明示的に活用するcGANを提案する。
画像ノイズの低次元多様体を直接学習することにより、この多様体にまたがる情報のみをノイズ画像から除去する。
我々の実験に基づいて、我々のモデルは既存の最先端アーキテクチャを大幅に上回っている。
論文 参考訳(メタデータ) (2020-02-11T00:31:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。