Truncation-Free Quantum Simulation of Pure-Gauge Compact QED Using Josephson Arrays
- URL: http://arxiv.org/abs/2410.11413v1
- Date: Tue, 15 Oct 2024 09:00:31 GMT
- Title: Truncation-Free Quantum Simulation of Pure-Gauge Compact QED Using Josephson Arrays
- Authors: Guy Pardo, Julian Bender, Nadav Katz, Erez Zohar,
- Abstract summary: Quantum simulation is one of the methods that have been proposed and used in practice to bypass computational challenges.
We propose a truncation-free method based on the exact analogy between the local Hilbert space of lattice QED and that of a Josephson junction.
Our method can simulate a quasi-2D system of up to $2times N$ plaquettes, and we present an approximate method that can simulate the fully-2D theory, but is more demanding experimentally and not immediately feasible.
- Score: 0.0
- License:
- Abstract: Quantum simulation is one of the methods that have been proposed and used in practice to bypass computational challenges in the investigation of lattice gauge theories. While most of the proposals rely on truncating the infinite dimensional Hilbert spaces that these models feature, we propose a truncation-free method based on the exact analogy between the local Hilbert space of lattice QED and that of a Josephson junction. We provide several proposals, mostly semi-analog, arranged according to experimental difficulty. Our method can simulate a quasi-2D system of up to $2\times N$ plaquettes, and we present an approximate method that can simulate the fully-2D theory, but is more demanding experimentally and not immediately feasible. This sets the ground for analog quantum simulation of lattice gauge theories with superconducting circuits, in a completely Hilbert space truncation-free procedure, for continuous gauge groups.
Related papers
- Real-space blocking of qubit variables on parallel lattice gauge theory links for quantum simulation [0.0]
lattice gauge theory is mapped onto quantum devices which can be built in the laboratory, or quantum computers.
This work proposes a way to obtain arbitrarily large local Hilbert spaces by using coarse graining of simple, low dimensional qubit systems.
arXiv Detail & Related papers (2023-11-28T06:35:10Z) - Simulating Gaussian boson sampling quantum computers [68.8204255655161]
We briefly review recent theoretical methods to simulate experimental Gaussian boson sampling networks.
We focus mostly on methods that use phase-space representations of quantum mechanics.
A brief overview of the theory of GBS, recent experiments and other types of methods are also presented.
arXiv Detail & Related papers (2023-08-02T02:03:31Z) - A new basis for Hamiltonian SU(2) simulations [0.0]
We develop a new basis suitable for the simulation of an SU(2) lattice gauge theory in the maximal tree gauge.
We show how to perform a Hamiltonian truncation so that the eigenvalues of both the magnetic and electric gauge-fixed Hamiltonian are mostly preserved.
arXiv Detail & Related papers (2023-07-21T18:03:26Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
We show how finite-temperature observables can be obtained with an algorithm motivated from the Jarzynski equality.
We show that a finite temperature phase transition in the long-range transverse field Ising model can be characterized in trapped ion quantum simulators.
arXiv Detail & Related papers (2022-06-03T18:00:02Z) - Resource-Efficient Quantum Simulation of Lattice Gauge Theories in
Arbitrary Dimensions: Solving for Gauss' Law and Fermion Elimination [0.0]
We focus on two important bottlenecks that make developing such simulators hard.
The redundancy of the Hilbert space leads to a waste of experimental resources and the need to impose and monitor the local constraints of gauge theories.
We show an alternative procedure for dealing with these problems, which removes the matter symmetry space, and is valid for higher space dimensions.
arXiv Detail & Related papers (2022-06-01T18:00:27Z) - Photon-mediated Stroboscopic Quantum Simulation of a $\mathbb{Z}_{2}$
Lattice Gauge Theory [58.720142291102135]
Quantum simulation of lattice gauge theories (LGTs) aims at tackling non-perturbative particle and condensed matter physics.
One of the current challenges is to go beyond 1+1 dimensions, where four-body (plaquette) interactions, not contained naturally in quantum simulating devices, appear.
We show how to prepare the ground state and measure Wilson loops using state-of-the-art techniques in atomic physics.
arXiv Detail & Related papers (2021-07-27T18:10:08Z) - Scalable cold-atom quantum simulator for two-dimensional QED [0.0]
We propose a scalable analog quantum simulator for quantum electrodynamics (QED) in two spatial dimensions.
The setup for the U(1) lattice gauge field theory employs inter-species spin-changing collisions in an ultra-cold atomic mixture trapped in an optical lattice.
arXiv Detail & Related papers (2020-12-18T18:45:55Z) - Engineering analog quantum chemistry Hamiltonians using cold atoms in
optical lattices [69.50862982117127]
We benchmark the working conditions of the numerically analog simulator and find less demanding experimental setups.
We also provide a deeper understanding of the errors of the simulation appearing due to discretization and finite size effects.
arXiv Detail & Related papers (2020-11-28T11:23:06Z) - Cold Atom Quantum Simulator for String and Hadron Dynamics in
Non-Abelian Lattice Gauge Theory [0.0]
Scheme calls for the realization of a two-state ultracold fermionic system in a 1-dimensional bipartite lattice.
Being based on novel loop string hadron formalism of SU(2) lattice gauge theory, this simulation technique is completely SU(2) invariant.
arXiv Detail & Related papers (2020-09-29T12:39:14Z) - Quantum Algorithms for Simulating the Lattice Schwinger Model [63.18141027763459]
We give scalable, explicit digital quantum algorithms to simulate the lattice Schwinger model in both NISQ and fault-tolerant settings.
In lattice units, we find a Schwinger model on $N/2$ physical sites with coupling constant $x-1/2$ and electric field cutoff $x-1/2Lambda$.
We estimate observables which we cost in both the NISQ and fault-tolerant settings by assuming a simple target observable---the mean pair density.
arXiv Detail & Related papers (2020-02-25T19:18:36Z) - Quantum Simulation of 2D Quantum Chemistry in Optical Lattices [59.89454513692418]
We propose an analog simulator for discrete 2D quantum chemistry models based on cold atoms in optical lattices.
We first analyze how to simulate simple models, like the discrete versions of H and H$+$, using a single fermionic atom.
We then show that a single bosonic atom can mediate an effective Coulomb repulsion between two fermions, leading to the analog of molecular Hydrogen in two dimensions.
arXiv Detail & Related papers (2020-02-21T16:00:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.