論文の概要: O-Edit: Orthogonal Subspace Editing for Language Model Sequential Editing
- arxiv url: http://arxiv.org/abs/2410.11469v1
- Date: Tue, 15 Oct 2024 10:16:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-16 14:02:39.893375
- Title: O-Edit: Orthogonal Subspace Editing for Language Model Sequential Editing
- Title(参考訳): O-Edit: 言語モデル系列編集のための直交部分空間編集
- Authors: Yuchen Cai, Ding Cao,
- Abstract要約: 大規模言語モデル(LLM)は、事前訓練中に知識を取得するが、時間が経つにつれて、この知識は誤りまたは時代遅れになり、訓練後に更新が必要になる。
このアルゴリズムは、各知識更新の方向をアルゴリズム化し、逐次更新間の干渉を最小限にし、新しい更新が無関係な知識に与える影響を減らす。
メインストリームのLCM上で数千の編集を行うことができ、既存のメソッドの4.2倍の性能向上を実現し、下流のタスクでモデルのパフォーマンスを効果的に保ち、パラメータのオーバーヘッドを最小限に抑えることができる。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Large language models (LLMs) acquire knowledge during pre-training, but over time, this knowledge may become incorrect or outdated, necessitating updates after training. Knowledge editing techniques address this issue without the need for costly re-training. However, most existing methods are designed for single edits, and as the number of edits increases, they often cause a decline in the model's overall performance, posing significant challenges for sequential editing. To overcome this, we propose Orthogonal Subspace Editing, O-Edit. This algorithm orthogonalizes the direction of each knowledge update, minimizing interference between successive updates and reducing the impact of new updates on unrelated knowledge. Our approach does not require replaying previously edited data and processes each edit knowledge on time. It can perform thousands of edits on mainstream LLMs, achieving an average performance improvement that is 4.2 times better than existing methods while effectively preserving the model's performance on downstream tasks, all with minimal additional parameter overhead.
- Abstract(参考訳): 大規模言語モデル(LLM)は、事前訓練中に知識を取得するが、時間が経つにつれて、この知識は誤りまたは時代遅れになり、訓練後に更新が必要になる。
知識編集技術は、コストのかかる再トレーニングを必要とせずにこの問題に対処する。
しかしながら、既存のほとんどのメソッドは単一の編集用に設計されており、編集数が増加するにつれて、モデル全体のパフォーマンスが低下することが多く、シーケンシャルな編集には重大な課題が生じる。
そこで我々はOrthogonal Subspace Editing, O-Editを提案する。
このアルゴリズムは、各知識更新の方向を直交化し、逐次更新間の干渉を最小限にし、新しい更新が無関係な知識に与える影響を減らす。
我々のアプローチでは、事前に編集されたデータや処理を時間通りに編集する必要がない。
メインストリームのLCM上で数千の編集を行うことができ、既存のメソッドの4.2倍の性能向上を実現し、下流のタスクでモデルのパフォーマンスを効果的に保ち、パラメータのオーバーヘッドを最小限に抑えることができる。
関連論文リスト
- Neuron-Level Sequential Editing for Large Language Models [19.324852774144752]
シーケンシャルモデル編集をサポートするための textbfNeuron レベルの textbfSequential textbfEditing (NSE) を導入する。
具体的には、モデルが失敗するのを防ぐために、モデルの最初の重みを使ってターゲット層の隠蔽状態を最適化する。
実験の結果、NSEは現在の修正パラメーターモデル編集法よりも大幅に優れていた。
論文 参考訳(メタデータ) (2024-10-05T05:52:22Z) - Better Call SAUL: Fluent and Consistent Language Model Editing with Generation Regularization [48.07144492109635]
大規模な言語モデルは定期的に更新する必要がある。
モデル編集は、新しいデータとは無関係な知識にも影響する可能性があるため、難しい。
文結合と拡張ランダムな事実を連成して生成規則化を行うモデル編集手法であるSAULを提案する。
論文 参考訳(メタデータ) (2024-10-03T12:28:13Z) - Enhance Lifelong Model Editing with Continuous Data-Adapter Association [55.697627106315004]
大規模言語モデル(LLM)は、特定の知識を効率的に更新し、事実の誤りを避けるためにモデル編集を必要とする。
現在のアプローチでは、元のパラメータを凍結し、知識修正毎に新しいアダプタを割り当てることで、シーケンシャルな編集を管理している。
ELDER, textbfEnhancing textbfLifelong motextbfDel textbfEditing with mixtutextbfRe of Low-Rank Adapter (LoRA)を提案する。
論文 参考訳(メタデータ) (2024-08-19T02:27:00Z) - Perturbation-Restrained Sequential Model Editing [33.51709226068619]
現在のモデル編集手法は、編集数が増加するにつれて、大きな言語モデル(LLM)の一般的な能力を損なう。
編集用上層部における摂動抑制フレームワーク(PRUNE)を提案する。
PRUNEは、シーケンシャルモデル編集において、編集性能を効果的に維持しながら、かなりの汎用性を維持できる。
論文 参考訳(メタデータ) (2024-05-27T04:40:56Z) - SWEA: Updating Factual Knowledge in Large Language Models via Subject Word Embedding Altering [17.20346072074533]
最近のモデル編集は、大規模言語モデル(LLM)の少量の知識を効率的に更新するための有望な手法である
本稿では,トークンレベルのマッチングによる埋め込みの編集を行うSWEAフレームワークを提案する。
我々は、textscCounterFactおよびzsREデータセット上でSWEA$oplus$OSのSOTA(State-of-the-art)パフォーマンスを実証する。
論文 参考訳(メタデータ) (2024-01-31T13:08:45Z) - Model Editing Harms General Abilities of Large Language Models: Regularization to the Rescue [122.20016030723043]
大規模言語モデル(LLM)におけるモデル編集の副作用を評価する。
分析の結果,モデルの重みを過度に修正したモデル編集によって副作用が生じることが明らかとなった。
これを軽減するために、修正の重み付けを正規化するためにRECTというメソッドが提案されている。
論文 参考訳(メタデータ) (2024-01-09T18:03:15Z) - Aging with GRACE: Lifelong Model Editing with Discrete Key-Value
Adaptors [53.819805242367345]
本稿では,展開モデルのストリーミングエラーにスポットフィックスを実装した生涯モデル編集手法であるGRACEを提案する。
GRACEはトレーニング済みモデルの潜在空間に新しいマッピングを記述し、モデルの重みを変更することなく、個別にローカルな編集のコードブックを作成する。
T5,BERT,GPTモデルを用いた実験では,非表示入力に一般化しつつ,編集および保持におけるGRACEの最先端性能を示す。
論文 参考訳(メタデータ) (2022-11-20T17:18:22Z) - Memory-Based Model Editing at Scale [102.28475739907498]
既存のモデルエディタは、編集対象のスコープを正確にモデル化するのに苦労する。
SERAC(Retrieval-Augmented Counterfactal Model)を用いた半パラメトリック編集を提案する。
SERACは、編集を明示的なメモリに格納し、必要に応じてベースモデルの予測を変更できるように、それらを推論することを学ぶ。
論文 参考訳(メタデータ) (2022-06-13T23:40:34Z) - Learning Structural Edits via Incremental Tree Transformations [102.64394890816178]
構造化データのインクリメンタルな編集(すなわち「構造的編集」)のための汎用モデルを提案する。
我々の編集者は、反復的にツリー編集(例えば、サブツリーの削除や追加)を生成し、部分的に編集されたデータに適用することを学びます。
提案したエディタを2つのソースコード編集データセットで評価した結果,提案する編集エンコーダでは,従来よりも精度が向上していることがわかった。
論文 参考訳(メタデータ) (2021-01-28T16:11:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。