Online learning in motion modeling for intra-interventional image sequences
- URL: http://arxiv.org/abs/2410.11491v1
- Date: Tue, 15 Oct 2024 10:53:12 GMT
- Title: Online learning in motion modeling for intra-interventional image sequences
- Authors: Niklas Gunnarsson, Jens Sjölund, Peter Kimstrand, Thomas. B Schön,
- Abstract summary: We present a probabilistic motion model for sequential medical images.
It estimates motion between acquired images and forecast the motion ahead of time.
Results show reliable motion estimates and an improved forecasting performance using patient-specific adaptation by online learning.
- Score: 8.493025486569833
- License:
- Abstract: Image monitoring and guidance during medical examinations can aid both diagnosis and treatment. However, the sampling frequency is often too low, which creates a need to estimate the missing images. We present a probabilistic motion model for sequential medical images, with the ability to both estimate motion between acquired images and forecast the motion ahead of time. The core is a low-dimensional temporal process based on a linear Gaussian state-space model with analytically tractable solutions for forecasting, simulation, and imputation of missing samples. The results, from two experiments on publicly available cardiac datasets, show reliable motion estimates and an improved forecasting performance using patient-specific adaptation by online learning.
Related papers
- A Unified Model for Compressed Sensing MRI Across Undersampling Patterns [69.19631302047569]
Deep neural networks have shown great potential for reconstructing high-fidelity images from undersampled measurements.
Our model is based on neural operators, a discretization-agnostic architecture.
Our inference speed is also 1,400x faster than diffusion methods.
arXiv Detail & Related papers (2024-10-05T20:03:57Z) - Multi-task Learning Approach for Intracranial Hemorrhage Prognosis [0.0]
We propose a 3D multi-task image model to predict prognosis, Glasgow Coma Scale and age, improving accuracy and interpretability.
Our method outperforms current state-of-the-art baseline image models, and demonstrates superior performance in ICH prognosis compared to four board-certified neuroradiologists using only CT scans as input.
arXiv Detail & Related papers (2024-08-16T14:56:17Z) - Real-time guidewire tracking and segmentation in intraoperative x-ray [52.51797358201872]
We propose a two-stage deep learning framework for real-time guidewire segmentation and tracking.
In the first stage, a Yolov5 detector is trained, using the original X-ray images as well as synthetic ones, to output the bounding boxes of possible target guidewires.
In the second stage, a novel and efficient network is proposed to segment the guidewire in each detected bounding box.
arXiv Detail & Related papers (2024-04-12T20:39:19Z) - Value Prediction for Spatiotemporal Gait Data Using Deep Learning [0.19972837513980318]
We expand application of deep learning to value prediction of time-seriestemporal gait data.
Our results show that short-distance prediction has an RMSE as low as 0.060675, and long-distance prediction RMSE as low as 0.106365.
The proposed, customized models, used with value prediction open possibilities for additional applications, such as fall prediction, in-home progress monitoring, aiding of exoskeleton movement, and authentication.
arXiv Detail & Related papers (2024-02-29T18:30:13Z) - Cardiac ultrasound simulation for autonomous ultrasound navigation [4.036497185262817]
We propose a method to generate large amounts of ultrasound images from other modalities and from arbitrary positions.
We present a novel simulation pipeline which uses segmentations from other modalities, an optimized data representation and GPU-accelerated Monte Carlo path tracing.
The proposed approach allows for fast and accurate patient-specific ultrasound image generation, and its usability for training networks for navigation-related tasks is demonstrated.
arXiv Detail & Related papers (2024-02-09T15:14:48Z) - Optimizing Sampling Patterns for Compressed Sensing MRI with Diffusion
Generative Models [75.52575380824051]
We present a learning method to optimize sub-sampling patterns for compressed sensing multi-coil MRI.
We use a single-step reconstruction based on the posterior mean estimate given by the diffusion model and the MRI measurement process.
Our method requires as few as five training images to learn effective sampling patterns.
arXiv Detail & Related papers (2023-06-05T22:09:06Z) - Solving Inverse Problems in Medical Imaging with Score-Based Generative
Models [87.48867245544106]
Reconstructing medical images from partial measurements is an important inverse problem in Computed Tomography (CT) and Magnetic Resonance Imaging (MRI)
Existing solutions based on machine learning typically train a model to directly map measurements to medical images.
We propose a fully unsupervised technique for inverse problem solving, leveraging the recently introduced score-based generative models.
arXiv Detail & Related papers (2021-11-15T05:41:12Z) - Simulating time to event prediction with spatiotemporal echocardiography
deep learning [12.059859769175281]
New methods for time-to-event prediction have been developed by extending the cox-proportional hazards model with neural networks.
We generate simulated survival datasets based on the expert annotated ejection fraction readings.
By training on just the simulated survival outcomes, we show thattemporal convolutional neural networks yield accurate survival estimates.
arXiv Detail & Related papers (2021-03-03T18:28:33Z) - Deep Co-Attention Network for Multi-View Subspace Learning [73.3450258002607]
We propose a deep co-attention network for multi-view subspace learning.
It aims to extract both the common information and the complementary information in an adversarial setting.
In particular, it uses a novel cross reconstruction loss and leverages the label information to guide the construction of the latent representation.
arXiv Detail & Related papers (2021-02-15T18:46:44Z) - Advancing diagnostic performance and clinical usability of neural
networks via adversarial training and dual batch normalization [2.1699022621790736]
We let six radiologists rate the interpretability of saliency maps in datasets of X-rays, computed tomography, and magnetic resonance imaging scans.
We found that the accuracy of adversarially trained models was equal to standard models when sufficiently large datasets and dual batch norm training were used.
arXiv Detail & Related papers (2020-11-25T20:41:01Z) - Convolutional-LSTM for Multi-Image to Single Output Medical Prediction [55.41644538483948]
A common scenario in developing countries is to have the volume metadata lost due multiple reasons.
It is possible to get a multi-image to single diagnostic model which mimics human doctor diagnostic process.
arXiv Detail & Related papers (2020-10-20T04:30:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.