Average Outward Flux Skeletons for Environment Mapping and Topology
Matching
- URL: http://arxiv.org/abs/2111.13826v1
- Date: Sat, 27 Nov 2021 06:29:57 GMT
- Title: Average Outward Flux Skeletons for Environment Mapping and Topology
Matching
- Authors: Morteza Rezanejad, Babak Samari, Elham Karimi, Ioannis Rekleitis,
Gregory Dudek, Kaleem Siddiqi
- Abstract summary: We consider how to extract a road map of an initially-unknown 2-dimensional environment via an online procedure that robustly computes a retraction of its boundaries.
The proposed algorithm results in smooth safe paths for the robot's navigation needs.
- Score: 15.93458380913065
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We consider how to directly extract a road map (also known as a topological
representation) of an initially-unknown 2-dimensional environment via an online
procedure that robustly computes a retraction of its boundaries. In this
article, we first present the online construction of a topological map and the
implementation of a control law for guiding the robot to the nearest unexplored
area, first presented in [1]. The proposed method operates by allowing the
robot to localize itself on a partially constructed map, calculate a path to
unexplored parts of the environment (frontiers), compute a robust terminating
condition when the robot has fully explored the environment, and achieve loop
closure detection. The proposed algorithm results in smooth safe paths for the
robot's navigation needs. The presented approach is any time algorithm that has
the advantage that it allows for the active creation of topological maps from
laser scan data, as it is being acquired. We also propose a navigation strategy
based on a heuristic where the robot is directed towards nodes in the
topological map that open to empty space. We then extend the work in [1] by
presenting a topology matching algorithm that leverages the strengths of a
particular spectral correspondence method [2], to match the mapped environments
generated from our topology-making algorithm. Here, we concentrated on
implementing a system that could be used to match the topologies of the mapped
environment by using AOF Skeletons. In topology matching between two given maps
and their AOF skeletons, we first find correspondences between points on the
AOF skeletons of two different environments. We then align the (2D) points of
the environments themselves. We also compute a distance measure between two
given environments, based on their extracted AOF skeletons and their topology,
as the sum of the matching errors between corresponding points.
Related papers
- Topograph: An efficient Graph-Based Framework for Strictly Topology Preserving Image Segmentation [78.54656076915565]
Topological correctness plays a critical role in many image segmentation tasks.
Most networks are trained using pixel-wise loss functions, such as Dice, neglecting topological accuracy.
We propose a novel, graph-based framework for topologically accurate image segmentation.
arXiv Detail & Related papers (2024-11-05T16:20:14Z) - NavTopo: Leveraging Topological Maps For Autonomous Navigation Of a Mobile Robot [1.0550841723235613]
We propose a full navigation pipeline based on topological map and two-level path planning.
The pipeline localizes in the graph by matching neural network descriptors and 2D projections of the input point clouds.
We test our approach in a large indoor photo-relaistic simulated environment and compare it to a metric map-based approach based on popular metric mapping method RTAB-MAP.
arXiv Detail & Related papers (2024-10-15T10:54:49Z) - Boundary Detection Algorithm Inspired by Locally Linear Embedding [8.259071011958254]
We propose a method for detecting boundary points inspired by the widely used locally linear embedding algorithm.
We implement this method using two nearest neighborhood search schemes: the $epsilon$-radius ball scheme and the $K$-nearest neighbor scheme.
arXiv Detail & Related papers (2024-06-26T16:05:57Z) - FRAME: A Modular Framework for Autonomous Map Merging: Advancements in the Field [12.247977717070773]
This article presents a novel approach for merging 3D point cloud maps in the context of egocentric multi-robot exploration.
The proposed approach leverages state-of-the-art place recognition and learned descriptors to efficiently detect overlap between maps.
The effectiveness of the proposed framework is successfully demonstrated through multiple field missions of robot exploration.
arXiv Detail & Related papers (2024-04-27T20:54:15Z) - PRISM-TopoMap: Online Topological Mapping with Place Recognition and Scan Matching [42.74395278382559]
This paper introduces PRISM-TopoMap -- a topological mapping method that maintains a graph of locally aligned locations.
The proposed method involves learnable multimodal place recognition paired with the scan matching pipeline for localization and loop closure.
We conduct a broad experimental evaluation of the suggested approach in a range of photo-realistic environments and on a real robot.
arXiv Detail & Related papers (2024-04-02T06:25:16Z) - Information Entropy Initialized Concrete Autoencoder for Optimal Sensor
Placement and Reconstruction of Geophysical Fields [58.720142291102135]
We propose a new approach to the optimal placement of sensors for reconstructing geophysical fields from sparse measurements.
We demonstrate our method on the two examples: (a) temperature and (b) salinity fields around the Barents Sea and the Svalbard group of islands.
We find out that the obtained optimal sensor locations have clear physical interpretation and correspond to the boundaries between sea currents.
arXiv Detail & Related papers (2022-06-28T12:43:38Z) - GraphWalks: Efficient Shape Agnostic Geodesic Shortest Path Estimation [93.60478281489243]
We propose a learnable network to approximate geodesic paths on 3D surfaces.
The proposed method provides efficient approximations of the shortest paths and geodesic distances estimations.
arXiv Detail & Related papers (2022-05-30T16:22:53Z) - Temporally-Consistent Surface Reconstruction using Metrically-Consistent
Atlases [131.50372468579067]
We propose a method for unsupervised reconstruction of a temporally-consistent sequence of surfaces from a sequence of time-evolving point clouds.
We represent the reconstructed surfaces as atlases computed by a neural network, which enables us to establish correspondences between frames.
Our approach outperforms state-of-the-art ones on several challenging datasets.
arXiv Detail & Related papers (2021-11-12T17:48:25Z) - Learning High Dimensional Wasserstein Geodesics [55.086626708837635]
We propose a new formulation and learning strategy for computing the Wasserstein geodesic between two probability distributions in high dimensions.
By applying the method of Lagrange multipliers to the dynamic formulation of the optimal transport (OT) problem, we derive a minimax problem whose saddle point is the Wasserstein geodesic.
We then parametrize the functions by deep neural networks and design a sample based bidirectional learning algorithm for training.
arXiv Detail & Related papers (2021-02-05T04:25:28Z) - Gaussian Process Gradient Maps for Loop-Closure Detection in
Unstructured Planetary Environments [17.276441789710574]
The ability to recognize previously mapped locations is an essential feature for autonomous systems.
Unstructured planetary-like environments pose a major challenge to these systems due to the similarity of the terrain.
This paper presents a method to solve the loop closure problem using only spatial information.
arXiv Detail & Related papers (2020-09-01T04:41:40Z) - Risk-Averse MPC via Visual-Inertial Input and Recurrent Networks for
Online Collision Avoidance [95.86944752753564]
We propose an online path planning architecture that extends the model predictive control (MPC) formulation to consider future location uncertainties.
Our algorithm combines an object detection pipeline with a recurrent neural network (RNN) which infers the covariance of state estimates.
The robustness of our methods is validated on complex quadruped robot dynamics and can be generally applied to most robotic platforms.
arXiv Detail & Related papers (2020-07-28T07:34:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.