Applied Federated Model Personalisation in the Industrial Domain: A Comparative Study
- URL: http://arxiv.org/abs/2409.06904v1
- Date: Tue, 10 Sep 2024 23:00:19 GMT
- Title: Applied Federated Model Personalisation in the Industrial Domain: A Comparative Study
- Authors: Ilias Siniosoglou, Vasileios Argyriou, George Fragulis, Panagiotis Fouliras, Georgios Th. Papadopoulos, Anastasios Lytos, Panagiotis Sarigiannidis,
- Abstract summary: Three suggested strategies to tackle this challenge include Active Learning, Knowledge Distillation, and Local Memorization.
The present study delves into the fundamental principles of these three approaches and proposes an advanced Federated Learning System.
The results of the original and optimised models are then compared in both local and federated contexts using a comparison analysis.
- Score: 5.999474111757664
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The time-consuming nature of training and deploying complicated Machine and Deep Learning (DL) models for a variety of applications continues to pose significant challenges in the field of Machine Learning (ML). These challenges are particularly pronounced in the federated domain, where optimizing models for individual nodes poses significant difficulty. Many methods have been developed to tackle this problem, aiming to reduce training expenses and time while maintaining efficient optimisation. Three suggested strategies to tackle this challenge include Active Learning, Knowledge Distillation, and Local Memorization. These methods enable the adoption of smaller models that require fewer computational resources and allow for model personalization with local insights, thereby improving the effectiveness of current models. The present study delves into the fundamental principles of these three approaches and proposes an advanced Federated Learning System that utilises different Personalisation methods towards improving the accuracy of AI models and enhancing user experience in real-time NG-IoT applications, investigating the efficacy of these techniques in the local and federated domain. The results of the original and optimised models are then compared in both local and federated contexts using a comparison analysis. The post-analysis shows encouraging outcomes when it comes to optimising and personalising the models with the suggested techniques.
Related papers
- Adv-KD: Adversarial Knowledge Distillation for Faster Diffusion Sampling [2.91204440475204]
Diffusion Probabilistic Models (DPMs) have emerged as a powerful class of deep generative models.
They rely on sequential denoising steps during sample generation.
We propose a novel method that integrates denoising phases directly into the model's architecture.
arXiv Detail & Related papers (2024-05-31T08:19:44Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
We present a comprehensive study on the integration of machine learning (ML) techniques into Huawei Cloud's OptVerse AI solver.
We showcase our methods for generating complex SAT and MILP instances utilizing generative models that mirror multifaceted structures of real-world problem.
We detail the incorporation of state-of-the-art parameter tuning algorithms which markedly elevate solver performance.
arXiv Detail & Related papers (2024-01-11T15:02:15Z) - A Comprehensive Study on Model Initialization Techniques Ensuring
Efficient Federated Learning [0.0]
Federated learning(FL) has emerged as a promising paradigm for training machine learning models in a distributed and privacy-preserving manner.
The choice of methods used for models plays a crucial role in the performance, convergence speed, communication efficiency, privacy guarantees of federated learning systems.
Our research meticulously compares, categorizes, and delineates the merits and demerits of each technique, examining their applicability across diverse FL scenarios.
arXiv Detail & Related papers (2023-10-31T23:26:58Z) - MinT: Boosting Generalization in Mathematical Reasoning via Multi-View
Fine-Tuning [53.90744622542961]
Reasoning in mathematical domains remains a significant challenge for small language models (LMs)
We introduce a new method that exploits existing mathematical problem datasets with diverse annotation styles.
Experimental results show that our strategy enables a LLaMA-7B model to outperform prior approaches.
arXiv Detail & Related papers (2023-07-16T05:41:53Z) - When to Update Your Model: Constrained Model-based Reinforcement
Learning [50.74369835934703]
We propose a novel and general theoretical scheme for a non-decreasing performance guarantee of model-based RL (MBRL)
Our follow-up derived bounds reveal the relationship between model shifts and performance improvement.
A further example demonstrates that learning models from a dynamically-varying number of explorations benefit the eventual returns.
arXiv Detail & Related papers (2022-10-15T17:57:43Z) - Improving Sample Efficiency of Deep Learning Models in Electricity
Market [0.41998444721319217]
We propose a general framework, namely Knowledge-Augmented Training (KAT), to improve the sample efficiency.
We propose a novel data augmentation technique to generate some synthetic data, which are later processed by an improved training strategy.
Modern learning theories demonstrate the effectiveness of our method in terms of effective prediction error feedbacks, a reliable loss function, and rich gradient noises.
arXiv Detail & Related papers (2022-10-11T16:35:13Z) - Model-Based Deep Learning: On the Intersection of Deep Learning and
Optimization [101.32332941117271]
Decision making algorithms are used in a multitude of different applications.
Deep learning approaches that use highly parametric architectures tuned from data without relying on mathematical models are becoming increasingly popular.
Model-based optimization and data-centric deep learning are often considered to be distinct disciplines.
arXiv Detail & Related papers (2022-05-05T13:40:08Z) - A Field Guide to Federated Optimization [161.3779046812383]
Federated learning and analytics are a distributed approach for collaboratively learning models (or statistics) from decentralized data.
This paper provides recommendations and guidelines on formulating, designing, evaluating and analyzing federated optimization algorithms.
arXiv Detail & Related papers (2021-07-14T18:09:08Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
There is an increasing need for active learning algorithms that are compatible with deep neural networks.
This article introduces BAIT, a practical representation of tractable, and high-performing active learning algorithm for neural networks.
arXiv Detail & Related papers (2021-06-17T17:26:31Z) - Model-based Meta Reinforcement Learning using Graph Structured Surrogate
Models [40.08137765886609]
We show that our model, called a graph structured surrogate model (GSSM), outperforms state-of-the-art methods in predicting environment dynamics.
Our approach is able to obtain high returns, while allowing fast execution during deployment by avoiding test time policy gradient optimization.
arXiv Detail & Related papers (2021-02-16T17:21:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.