論文の概要: Data Quality Control in Federated Instruction-tuning of Large Language Models
- arxiv url: http://arxiv.org/abs/2410.11540v1
- Date: Tue, 15 Oct 2024 12:14:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-16 14:01:31.138328
- Title: Data Quality Control in Federated Instruction-tuning of Large Language Models
- Title(参考訳): 大規模言語モデルのフェデレーション学習におけるデータ品質制御
- Authors: Yaxin Du, Rui Ye, Fengting Yuchi, Wanru Zhao, Jingjing Qu, Yanfeng Wang, Siheng Chen,
- Abstract要約: データ品質制御(FedDQC)を備えた大規模言語モデル(LLM)のフェデレーション・インストラクション・チューニングの新しいフレームワークを提案する。
提案手法では,各クライアントの命令応答アライメント(IRA)を評価するための効率的なメトリクスを導入し,単一ショット推論によるノイズの多いデータを同定する。
我々は4つの合成データセットと実世界のデータセットについて広範な実験を行い、この手法を集中的な設定から適応したベースラインと比較した。
- 参考スコア(独自算出の注目度): 43.29678396558287
- License:
- Abstract: By leveraging massively distributed data, federated learning (FL) enables collaborative instruction tuning of large language models (LLMs) in a privacy-preserving way. While FL effectively expands the data quantity, the issue of data quality remains under-explored in the current literature on FL for LLMs. To address this gap, we propose a new framework of federated instruction tuning of LLMs with data quality control (FedDQC), which measures data quality to facilitate the subsequent filtering and hierarchical training processes. Our approach introduces an efficient metric to assess each client's instruction-response alignment (IRA), identifying potentially noisy data through single-shot inference. Low-IRA samples are potentially noisy and filtered to mitigate their negative impacts. To further utilize this IRA value, we propose a quality-aware hierarchical training paradigm, where LLM is progressively fine-tuned from high-IRA to low-IRA data, mirroring the easy-to-hard learning process. We conduct extensive experiments on 4 synthetic and a real-world dataset, and compare our method with baselines adapted from centralized setting. Results show that our method consistently and significantly improves the performance of LLMs trained on mix-quality data in FL.
- Abstract(参考訳): 膨大な分散データを活用することにより、フェデレートドラーニング(FL)は、プライバシ保存方式で大規模言語モデル(LLM)の協調的な命令チューニングを可能にする。
FLはデータ量を効果的に拡大するが、LLMのFLに関する現在の文献では、データ品質の問題はまだ未解決のままである。
このギャップに対処するために,データ品質制御(FedDQC)を用いたLLMのフェデレーション・インストラクション・チューニング手法を提案する。
提案手法では,各クライアントの命令応答アライメント(IRA)を評価するための効率的なメトリクスを導入し,単一ショット推論によるノイズの多いデータを同定する。
低IRAサンプルはうるさい可能性があり、その負の影響を軽減するためにフィルターされる。
このIRA値をさらに活用するために,LLMを高IRAデータから低IRAデータへ段階的に微調整し,難易度学習プロセスを反映した品質意識の階層的学習パラダイムを提案する。
我々は4つの合成データセットと実世界のデータセットについて広範な実験を行い、この手法を集中的な設定から適応したベースラインと比較した。
その結果,本手法はFLの混合品質データに基づいて学習したLLMの性能を連続的に,かつ著しく向上させることがわかった。
関連論文リスト
- Entropy Law: The Story Behind Data Compression and LLM Performance [115.70395740286422]
モデル性能はトレーニングデータの圧縮比と負の相関関係にあり,トレーニング損失が小さくなるのが普通である。
エントロピー法則の知見に基づいて, 極めて効率的で普遍的なデータ選択法を提案する。
また,モデルトレーニング開始時の潜在的な性能リスクを検出するエントロピー法則の興味深い応用を提案する。
論文 参考訳(メタデータ) (2024-07-09T08:14:29Z) - How to Train Data-Efficient LLMs [56.41105687693619]
事前学習言語モデル(LLM)に対するデータ効率のアプローチについて検討する。
Ask-LLMと密度サンプリングがそれぞれのカテゴリで最適であることがわかった。
何百もの評価タスクと事前学習作業を含む19個のサンプルを比較したところ,Ask-LLMと密度がそれぞれのカテゴリで最適な方法であることが判明した。
論文 参考訳(メタデータ) (2024-02-15T02:27:57Z) - Rethinking the Instruction Quality: LIFT is What You Need [20.829372251475476]
既存の品質改善手法は、データセットの拡張やキュレーションを通じて命令データを変更する。
本稿では,命令品質を新たな高さに高めるために設計された新しい多目的パラダイムであるLIFT(LLM Instruction Fusion Transfer)を提案する。
実験結果から, LLMは, パラダイムによって選択された高品質な命令データが少ない場合でも, 各種タスクにおける頑健な性能を一貫して維持することを示した。
論文 参考訳(メタデータ) (2023-12-12T03:30:21Z) - Reflection-Tuning: Data Recycling Improves LLM Instruction-Tuning [79.32236399694077]
トレーニングセットの低品質データは、通常、チューニングのチューニングに有害である。
我々は「反射チューニング」と呼ばれる新しい手法を提案する。
このアプローチでは、オラクルLSMを使用して、データ内の命令や応答の質を検査し、向上することで、元のトレーニングデータをリサイクルする。
論文 参考訳(メタデータ) (2023-10-18T05:13:47Z) - FederatedScope-LLM: A Comprehensive Package for Fine-tuning Large
Language Models in Federated Learning [70.38817963253034]
本稿では, ファインチューニング LLM のこれらの課題について論じ, 本パッケージ FS-LLM を主な貢献として紹介する。
我々は、FLシナリオにおける将来の拡張のために、包括的フェデレーションパラメータ効率の良い微調整アルゴリズムの実装と汎用プログラミングインタフェースを提供する。
本研究では, FS-LLM の有効性を検証し, FL 設定におけるパラメータ効率の高いパラメータ調整アルゴリズムを用いて, 高度な LLM のベンチマークを行う。
論文 参考訳(メタデータ) (2023-09-01T09:40:36Z) - From Quantity to Quality: Boosting LLM Performance with Self-Guided Data Selection for Instruction Tuning [52.257422715393574]
本稿では,Large Language Models (LLMs) の自己誘導手法を導入し,オープンソースデータセットからサクラサンプルを自動識別し,選択する。
我々の重要な革新である命令追従困難度(IFD)メトリックは、モデルが期待する応答と本質的な生成能力の相違を識別するための重要な指標として現れます。
論文 参考訳(メタデータ) (2023-08-23T09:45:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。