論文の概要: Federated Deep Equilibrium Learning: Harnessing Compact Global Representations to Enhance Personalization
- arxiv url: http://arxiv.org/abs/2309.15659v2
- Date: Tue, 29 Oct 2024 03:58:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-30 13:36:29.304326
- Title: Federated Deep Equilibrium Learning: Harnessing Compact Global Representations to Enhance Personalization
- Title(参考訳): Deep Equilibrium Learning: パーソナライゼーションを促進するためのグローバル表現のコンパクト化
- Authors: Long Tan Le, Tuan Dung Nguyen, Tung-Anh Nguyen, Choong Seon Hong, Suranga Seneviratne, Wei Bao, Nguyen H. Tran,
- Abstract要約: Federated Learning(FL)は、クライアントがデータを交換することなくグローバルモデルを協調的にトレーニングできる、画期的な分散学習パラダイムとして登場した。
FeDEQは,高効率なパーソナライズのために,コンパクトなグローバルデータ表現を利用するために,深い平衡学習とコンセンサス最適化を取り入れた新しいFLフレームワークである。
FeDEQは,訓練中の通信サイズを最大4倍,メモリフットプリントを1.5倍に削減しつつ,最先端のパーソナライズされたFL法の性能に適合することを示した。
- 参考スコア(独自算出の注目度): 23.340237814344377
- License:
- Abstract: Federated Learning (FL) has emerged as a groundbreaking distributed learning paradigm enabling clients to train a global model collaboratively without exchanging data. Despite enhancing privacy and efficiency in information retrieval and knowledge management contexts, training and deploying FL models confront significant challenges such as communication bottlenecks, data heterogeneity, and memory limitations. To comprehensively address these challenges, we introduce FeDEQ, a novel FL framework that incorporates deep equilibrium learning and consensus optimization to harness compact global data representations for efficient personalization. Specifically, we design a unique model structure featuring an equilibrium layer for global representation extraction, followed by explicit layers tailored for local personalization. We then propose a novel FL algorithm rooted in the alternating directions method of multipliers (ADMM), which enables the joint optimization of a shared equilibrium layer and individual personalized layers across distributed datasets. Our theoretical analysis confirms that FeDEQ converges to a stationary point, achieving both compact global representations and optimal personalized parameters for each client. Extensive experiments on various benchmarks demonstrate that FeDEQ matches the performance of state-of-the-art personalized FL methods, while significantly reducing communication size by up to 4 times and memory footprint by 1.5 times during training.
- Abstract(参考訳): Federated Learning(FL)は、クライアントがデータを交換することなくグローバルモデルを協調的にトレーニングできる、画期的な分散学習パラダイムとして登場した。
情報検索と知識管理のコンテキストにおけるプライバシーと効率性の向上にもかかわらず、FLモデルのトレーニングとデプロイは、通信ボトルネック、データ不均一性、メモリ制限といった重要な課題に直面している。
これらの課題を包括的に解決するために、我々は、効率的なパーソナライズのためにコンパクトなグローバルデータ表現を利用するために、深い平衡学習とコンセンサス最適化を取り入れた新しいFLフレームワークであるFeDEQを紹介する。
具体的には、グローバルな表現抽出のための平衡層を特徴とするユニークなモデル構造を設計し、続いて局所的なパーソナライズに適した明示的な層を設計する。
そこで我々は,分散データセット間の共有平衡層と個別パーソナライズ層を協調的に最適化する,交互方向乗算器 (ADMM) 法に根ざした新しいFLアルゴリズムを提案する。
理論的解析により,FeDEQは静止点に収束し,各クライアントに対して,コンパクトなグローバル表現と最適なパーソナライズパラメータの両方を実現する。
様々なベンチマーク実験により、FeDEQは最先端のパーソナライズされたFL法の性能と一致し、通信サイズを最大4倍、メモリフットプリントを1.5倍に削減した。
関連論文リスト
- Adversarial Federated Consensus Learning for Surface Defect Classification Under Data Heterogeneity in IIoT [8.48069043458347]
産業用IoT(Industrial Internet of Things)における各種エンティティからの十分なトレーニングデータの収集と集中化は難しい。
フェデレートラーニング(FL)は、クライアント間で協調的なグローバルモデルトレーニングを可能にするソリューションを提供する。
我々は,Adversarial Federated Consensus Learning (AFedCL) という新しいFLアプローチを提案する。
論文 参考訳(メタデータ) (2024-09-24T03:59:32Z) - FedMAP: Unlocking Potential in Personalized Federated Learning through Bi-Level MAP Optimization [11.040916982022978]
フェデレートラーニング(FL)は、分散データに基づく機械学習モデルの協調トレーニングを可能にする。
クライアント間でのデータはしばしば、クラス不均衡、特徴分散スキュー、サンプルサイズ不均衡、その他の現象によって大きく異なる。
本稿では,バイレベル最適化を用いた新しいベイズPFLフレームワークを提案する。
論文 参考訳(メタデータ) (2024-05-29T11:28:06Z) - An Aggregation-Free Federated Learning for Tackling Data Heterogeneity [50.44021981013037]
フェデレートラーニング(FL)は、分散データセットからの知識を活用する効果に頼っている。
従来のFLメソッドでは、クライアントが前回のトレーニングラウンドからサーバが集約したグローバルモデルに基づいてローカルモデルを更新するアグリゲート-then-adaptフレームワークを採用している。
我々は,新しいアグリゲーションフリーFLアルゴリズムであるFedAFを紹介する。
論文 参考訳(メタデータ) (2024-04-29T05:55:23Z) - Federated Learning with Projected Trajectory Regularization [65.6266768678291]
フェデレーション学習は、ローカルデータを共有せずに、分散クライアントから機械学習モデルの共同トレーニングを可能にする。
連合学習における重要な課題の1つは、クライアントにまたがる識別できない分散データを扱うことである。
本稿では,データ問題に対処するための予測軌道正則化(FedPTR)を備えた新しいフェデレーション学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-22T02:12:08Z) - Federated Learning for Semantic Parsing: Task Formulation, Evaluation
Setup, New Algorithms [29.636944156801327]
複数のクライアントは、セマンティック解析データを共有せずに、1つのグローバルモデルを協調的にトレーニングする。
Lorarは、各ラウンド中のトレーニング損失の削減に基づいて、グローバルモデル更新に対する各クライアントのコントリビューションを調整する。
より小さなデータセットを持つクライアントは、より大きなパフォーマンス向上を享受する。
論文 参考訳(メタデータ) (2023-05-26T19:25:49Z) - Towards More Suitable Personalization in Federated Learning via
Decentralized Partial Model Training [67.67045085186797]
既存のシステムのほとんどは、中央のFLサーバが失敗した場合、大きな通信負荷に直面しなければならない。
共有パラメータと個人パラメータを交互に更新することで、ディープモデルの「右」をパーソナライズする。
共有パラメータアグリゲーションプロセスをさらに促進するために、ローカルシャープネス最小化を統合するDFedを提案する。
論文 参考訳(メタデータ) (2023-05-24T13:52:18Z) - Tensor Decomposition based Personalized Federated Learning [12.420951968273574]
Federated Learning(FL)は、ユーザのプライベートデータを収集することなく、確実に協調的なトレーニングを実現する、新しい分散機械学習フレームワークである。
FLの頻繁なコミュニケーションと平均集約戦略により、統計多様性データや大規模モデルへのスケーリングが困難になる。
本稿では,分解に基づくパーソナライズドラーニング(TDPFed)と呼ばれるFLフレームワークを提案する。このフレームワークでは,テンソル化線形層と畳み込み層を持つ新しいテンソル化局所モデルを設計し,通信コストを削減する。
論文 参考訳(メタデータ) (2022-08-27T08:09:14Z) - FedDM: Iterative Distribution Matching for Communication-Efficient
Federated Learning [87.08902493524556]
フェデレートラーニング(FL)は近年、学術や産業から注目を集めている。
我々は,複数の局所的代理関数からグローバルなトレーニング目標を構築するためのFedDMを提案する。
そこで本研究では,各クライアントにデータ集合を構築し,元のデータから得られた損失景観を局所的にマッチングする。
論文 参考訳(メタデータ) (2022-07-20T04:55:18Z) - Efficient Split-Mix Federated Learning for On-Demand and In-Situ
Customization [107.72786199113183]
フェデレートラーニング(FL)は、複数の参加者が生データを共有せずに学習をコラボレーションするための分散ラーニングフレームワークを提供する。
本稿では, モデルサイズとロバスト性をその場でカスタマイズできる, 不均一な参加者のための新しいスプリット・ミクス・FL戦略を提案する。
論文 参考訳(メタデータ) (2022-03-18T04:58:34Z) - Toward Understanding the Influence of Individual Clients in Federated
Learning [52.07734799278535]
フェデレーションラーニングにより、クライアントはプライベートデータを中央サーバーに送信することなく、グローバルモデルを共同でトレーニングできます。
em-Influenceという新しい概念を定義し、パラメータに対するこの影響を定量化し、このメトリクスを推定する効果的な効率的なモデルを提案しました。
論文 参考訳(メタデータ) (2020-12-20T14:34:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。